Figure A. 19 Great black-backed gull 2018 breeding season collision risk estimates at 15 - $\mathbf{1 5 0} \mathbf{m}$, per turbine, per snapshot recording zone at 98 \% avoidance

Figure A. 20 Great black-backed gull Year 1 non-breeding season collision risk estimates at $\mathbf{1 5} \mathbf{- 1 5 0} \mathbf{~ m}$, per turbine, per snapshot recording zone at 98 \% avoidance

Figure A. 21 Great black-backed gull 2019 breeding season collision risk estimates at 15 - $\mathbf{1 5 0} \mathbf{m}$, per turbine, per snapshot recording zone at 98 \% avoidance

APPENDIX B RED-THROATED DIVER COLLISION RISK WORKINGS

 throated Diver Data' provides full details of the red-throated diver flight activity data for each year used in these calculations.

The 'Birds through a risk window' model is the most appropriate for this species.

B. 1 EXTRAPOLATION TO ACCOUNT FOR MISSED FLIGHT LINES

 here.

 path was mapped. Three hours of simultaneous watches is counted as three hours observation of the risk window.
 that every three hours of observation time is made up of three hours from VP1 and three hours from VP3.

B. 2 EXTRAPOLATIONS FROM OBSERVATIONS TO A FULL SEASON

 sub-totals of birds flying through the risk window; these figures for 2018 and 2019 are shown in Table B. 1 and Table B.2, respectively.

Table B. 1 Extrapolation of observed risk for 2018 for the 15 - $150 \mathbf{m}$ recording height band

a	b	c	d	e	f	g	h
Month	Average day length (hh:mm)	Twilight time allowed per day (hh:mm)	No. days	Available flying hours for divers $(b+c) \times d$	VP hours	No. passes through risk window	Extrapolated no. passes through risk window
April	14:29	1:30	30	479.5	6.0	1	80
May	16:56	1:30	31	571.4	6.0	6	571
June	18:21	1:30	30	595.5	6.0	5.5	546
July	17:42	1:30	31	595.2	9.0	4	265
August	15:29	1:30	31	526.5	9.0	6	351
September	13:29	1:30	15	224.8	3.0	0	0
Sum of monthly totals							1,813
Single seasonal extrapolation				2,992.9	39.0	22.5	1,727

Table B. 2 Extrapolation of observed risk for 2019 for the 15 - 150 m recording height band

a	b	c	d	e	f	g	h
Month	Average day length (hh:mm)	Twilight time allowed per day (hh:mm)	No. days	Available flying hours for divers $(b+c) \times d$	VP hours	No. passes through risk window	Extrapolated no. passes through risk window
April	14:29	1:30	30	479.5	9.0	0	0
May	16:56	1:30	31	571.4	12.0	8	381
June	18:21	1:30	30	595.5	15.0	32	1,270
July	17:42	1:30	31	595.2	14.13	21	885
August	15:29	1:30	31	526.5	15.88	20.75	688
September	13:29	1:30	15	224.8	3.0	0	0
					Sum of monthly totals		3,224
Single seasonal extrapolation				2,992.9	69.0	81.75	3,546

 calculation would have been lower in 2018 (by about 5 \%) and higher in 2019 (by about 10 \%).

B. 3 CALCULATION OF COLLISION RISK

The workings of the collision risk calculations for the risk window are shown in Table B.3.

 the risk window; it is arrived at simply by applying the proportion of the total rotor area for six turbines to the overall area of the risk window.

A turbine operational efficiency factor of 85% has been applied.

The Band Model percentage (i.e. the likelihood of a bird that flies through the rotors actually being hit) has then been applied; this is 5.9 \%. (Table B.4).

The accepted avoidance rate for red-throated diver has then been applied; this is 99.5% (SNH, 2018a).

Table B. 3 Red-throated diver collision risk estimates for the Proposed Development by number of birds through the risk window

Ref.		$\begin{gathered} 2018 \\ 15-150 \mathrm{~m} \end{gathered}$	$\begin{gathered} 2019 \\ 15-150 \mathrm{~m} \end{gathered}$
a	Width of risk window	1,550 m	1,550 m
b	Height of risk band	$15-150 \mathrm{~m}=135 \mathrm{~m}$	$15-150 \mathrm{~m}=135 \mathrm{~m}$
C	Area of risk window ($a \times b$)	209,250 m²	209,250 m²
d	Rotor diameter	136 m	136 m
e	Rotor depth (maximum)	4.2 m	4.2 m
f	Bird length	0.61 m	0.61 m
g	Effective rotor depth $(e+f)$	4.81 m	4.81 m
h	Rotor area $\left([\mathrm{d} / 2]^{2} \times \mathrm{pi}\right)$	14,529 m ${ }^{2}$	14,529 m ${ }^{2}$

Ref.		$\begin{gathered} 2018 \\ 15-150 \mathrm{~m} \end{gathered}$	$\begin{gathered} 2019 \\ 15-150 \mathrm{~m} \end{gathered}$
i	Total rotor area for 6 turbines $(h \times 6)$	$87,174 \mathrm{~m}^{2}$	87,174 m²
j	Rotor area as a proportion of risk window (j / c)	0.4166	0.4166
k	Total extrapolated number of divers at risk (from Table B. 1 and Table B.2).	1,813	3,224
m	Number passing through the rotor area ($\mathrm{k} \times \mathrm{j}$)	755	1,343
n	No. passes through rotors at 85 \% operational efficiency ($\mathrm{m} \times 0.85$)	642	1,141
p	No. passes expected to collide at Band Model \% of 5.9 ($\mathrm{n} \times 0.059$)	37.9	67.3
q	Number of collisions at $\mathbf{9 9 . 5 \%}$ avoidance rate ($\mathrm{p} \times 0.005$)	0.19	0.34

Table B. 4 Band model percentage calculation for red-throated diver (the probability of collision for a single rotor transit)

NoBlades	3	
MaxChord	4.20	m
Pitch (degrees)	15	
Species name	Red-throated Diver	
BirdLength	0.61	m
Wingspan F: flapping (0) or gliding $(+1)$	1.11 0	m
Proportion of flights upwind	50\%	\%
Bird speed	19	$\mathrm{m} / \mathrm{sec}$
Rotor Radius	68	m
Rotation Speed	12	rpm
Rotation Period	5.00	sec
Bird aspect ratio: β	0.55	
Integration interval	0.05	

APPENDIX C PEREGRINE COLLISION RISK WORKINGS

This appendix presents a description of the collision risk calculations undertaken for peregrine. Full details of the peregrine flight activity data for each year used in these calculations are shown in Appendix 7.1 Ornithology Technical Report. The 'Birds using the windfarm airspace' model is the most appropriate for peregrine.

Figure C. 1 shows the number of birds per hour within the flight buffer in each month of survey, from April 2018 to March 2020. Monthly rates of sightings were low (zero to three each month) with numerous gaps and no obvious seasonal pattern. The only age class confirmed from VP watches was adult, for which there were six birds out of the 23 seen in total across all parts of the survey area. All of the other birds were unaged, but likely to have included some young birds in their first year.

Figure C. 1 Peregrine: birds-per-hour within the flight buffer area for each month of the two-year survey period (all age classes combined)

C. 1 EXTRAPOLATION OF DATA

C.1.1 Effective hours watched across the wind farm buffer

The peregrine flights at risk were often rapidly transiting across the survey area at some height. This means that peregrines would have been harder to pick up than hen harriers, particularly since they are less bulky and usually lighter coloured beneath, and the effective coverage from the VPs would have been lower. The coverage assumed is therefore out
 account for missed portions of flight lines.

 the second survey year:

VP1, year 1 - 58.5 \% coverage at 15 m above ground
VP1, year $2-81.5 \%$ coverage at 15 m above ground
VP3, both years - 51.3 \% coverage at 15 m above ground

The coverage from each VP for each month is tabulated below (see Table C.1).
 season and for occasional watches in the 2019/20 non-breeding season.

Table C. 1 Effective coverage of the wind farm buffer for peregrine from each VP at the 15 - 150 meight band

Month	VP1 observation time (hrs)	Multiplier < 2 km	Effective VP1 hours	VP3 observation time (hrs)	Multiplier < 2 km	Effective VP3 hours	TOTAL effective hrs from both VPs ${ }^{4}$
Mar-18	6	0.585	3.51	6	0.513	3.08	6.59
Apr-18	6	0.585	3.51	6	0.513	3.08	6.59
May-18	6	0.585	3.51	6	0.513	3.08	6.59
Jun-18	9	0.585	5.27	9	0.513	4.62	9.89
Jul-18	9	0.585	5.27	9	0.513	4.62	9.89
Aug-18	6	0.585	3.51	6	0.513	3.08	6.59
Sep-18	6	0.585	3.51	6	0.513	3.08	6.59
Oct-18	6	0.585	3.51	6	0.513	3.08	6.59
Nov-18	6	0.585	3.51	6	0.513	3.08	6.59

${ }^{4}$ 'cap' means some or all watches capped at 3 hours when being manned simultaneously from both VPs.

Month	VP1 observation time (hrs)	Multiplier < 2 km	Effective VP1 hours	VP3 observation time (hrs)	Multiplier < 2 km	Effective VP3 hours	TOTAL effective hrs from both VPs ${ }^{4}$
Dec-18	6	0.585	3.51	6	0.513	3.08	6.59
Jan-19	6	0.585	3.51	6	0.513	3.08	6.59
Feb-19	6	0.585	3.51	6	0.513	3.08	6.59
Mar-19	6	0.585	3.51	6	0.513	3.08	6.59
Apr-19	9	0.815	7.34	9	0.513	4.62	9.98 (cap)
May-19	12	0.815	9.78	12	0.513	6.16	12.00 (cap)
Jun-19	15	0.815	12.23	15	0.513	7.70	15.00 (cap)
Jul-19	13.25	0.815	10.80	15	0.513	7.70	14.56 (cap)
Aug-19	16.75	0.815	13.65	15	0.513	7.70	17.41 (cap)
Sep-19	6	0.815	4.89	6	0.513	3.08	7.97
Oct-19	6	0.815	4.89	6	0.513	3.08	7.97
Nov-19	6	0.815	4.89	6	0.513	3.08	6.98 (cap)
Dec-19	6	0.815	4.89	6	0.513	3.08	7.97
Jan-20	6	0.815	4.89	6	0.513	3.08	7.97
Feb-20	6	0.815	4.89	6	0.513	3.08	7.97
Mar-20	6	0.815	4.89	6	0.513	3.08	6.98 (cap)
	186		133.67	186		95.48	208.44

C.1.2 Extrapolations from observations to a full year

An estimate of the bird occupancy within the flight risk volume is required as an input for this model. The details of each peregrine flight line for 2018/19 and 2019/20, showing the observed times at each height band estimated within the wind farm buffer are shown in Appendix 7.1 Ornithology Technical Report. Bird occupancy has been calculated based on the observed flight time at risk within the whole risk height band. These values have then been extrapolated for each month, and on an annual basis, using the total flying time available and the total effective observation hours (Table C.1). Because of the number of zero months, the single annual calculation is taken as the better representative figure for yearly risk.

Bird occupancy for the 15 - 150 m height band for the 2019 (and partial 2020) breeding season is shown in Table C. 2.

Table C. 2 Extrapolation of observed risk for the 15 - $150 \mathbf{m}$ recording height band

a	b	c	d	e
Month	Available flying hours for peregrines (at 58.8° latitude per Band, 2012)	Effective VP hours	Seconds observed at risk within the wind farm buffer	```Extrapolated time at-risk (seconds) (d x b/c)```
March	365	13.57	0	0
April	432	16.57	132	3,441
May	522	18.59	228	6,402
June	549	21.59	15	381
July	547	24.44	0	0
August	480	27.29	0	0
September	387	14.56	195	5,183
October	319	14.56	0	0
November	236	13.57	0	0
December	198	14.56	0	0
January	220	14.56	50	755
February	258	14.56	26	461
			Sum of monthly totals	16,623
Single, pooled annual calculation	4,513	208.42	646	13,988

C.1.3 Calculation of collision risk

 blade depth plus bird length) gives the number of passes through the rotors.

A turbine operational efficiency factor of 85% has been applied.

The Band Model percentage (i.e. the likelihood of a bird that flies through the rotors actually being hit) has then been applied; this is 6.4% (Table C.4).

The accepted avoidance rate for peregrine has then been applied; this is 98% (SNH, 2018a).

Table C. 3 Peregrine collision risk estimate for the Proposed Development by timed flights across the wind farm buffer area- all data pooled into a single annual calculation

Ref.		Whole year (single annual calculation)
a	Ground area of wind farm buffer	$\begin{aligned} & 1.3763 \mathrm{~km}^{2} \text { or } \\ & 1.3763 \times 10^{6} \mathrm{~m}^{2} \end{aligned}$
b	Height of risk band	15-150 m = 135 m
C	Volume of wind farm buffer $(a \times b)$	$1.8508 \times 10^{8} \mathrm{~m}^{3}$
d	Rotor diameter	136 m
e	Rotor depth (maximum)	4.2 m
f	Bird length	0.42 m
g	Effective rotor depth $(e+f)$	4.62 m
h	Effective rotor volume per turbine $\left([\mathrm{d} / 2]^{2} \times \mathrm{pi} \times \mathrm{g}\right)$	$6.7124 \times 10^{4} \mathrm{~m}^{3}$
i	Total rotor volume for 6 turbines $(h \times 6)$	$4.0274 \times 10^{5} \mathrm{~m}^{3}$
j	Rotor volume as a proportion of flight buffer (j / c)	0.002176
k	Total extrapolated time for peregrines at risk (from Table C.2)	13,988 secs
m	Time within rotor volume $(k \times j)$	30.4 secs
n	Equivalent flight length within rotor volume at $12 \mathrm{~m} / \mathrm{sec}$ $(m \times 12)$	365 m

Ref.		Whole year (single annual calculation)
p	No. passes through rotors $(\mathrm{n} / \mathrm{g})$	79
q	No. passes through rotors at 85 \% operational efficiency ($\mathrm{p} \times 0.85$)	67.1
r	No. passes expected to collide at Band Model \% of 6.4 \% ($\mathrm{q} \times 0.064$)	4.29
S	Number of collisions at 98 \% avoidance rate ($\mathrm{r} \times \mathbf{0 . 0 2}$)	0.09

Table C. 4 Band model percentage calculation for peregrine (the probability of collision for a single rotor transit)

Overall p(collision) integrated over disk
 Proportion upwind:

Upwind $\quad 8.9 \%$
Downwind 3.9\%

APPENDIX D HEN HARRIER COLLISION RISK WORKINGS

This appendix presents a description of the collision risk calculations undertaken for hen harrier. The accompanying spreadsheet 'Annex 2 Hen Harrier Data' provides full details of the hen harrier flight activity data for each year used in these calculations. The 'Birds using the windfarm airspace' model is the most appropriate for hen harrier.

The calculations of collision risk for the breeding season period (April to August) presented here for 2018 and 2019 separately represent the bulk of the collision risk for each full year. There were only two hen harrier flights recorded at risk height during the first non-breeding season (September 2018 to March 2019). Both of these flight lines were well away from the final wind farm buffer and therefore did not generate any calculated risk. There were twelve flights at risk height in the 2019/20 non-breeding season, several of which were partly within the final wind farm buffer, generating some risk.

The extrapolations to full seasons are shown in Table D. 2 and Table D. 3 below, carried out monthly to allow for the variable daylight hours and variable VP watch times, and also presented as a single seasonal calculation. The breeding season extrapolation for each year is taken as the sum of the monthly extrapolations but, given the number of months with zero observed flight at risk, the combined non-breeding season is based on a single seasonal calculation.

D. 1 EXTRAPOLATION OF DATA

D.1.1 Effective hours watched across the wind farm buffer

The hen harrier flights at risk were often slow, circling or gliding within a confined part of the survey area, and at relatively low levels compared to the red-throated diver flights that transited right across both VP viewing areas at considerable height. This made the hen harriers relatively easy to pick up and it follows that the detection rates were substantially higher for this species than for red-throated divers. No adjustments to flight times for missed portions of hen harrier flights within the survey area have been made

Based on the observed flights at risk within the wind farm buffer from VP3 at distances up to 2.5 km from the VP, an adjustment has been made in the calculation to allow for this additional coverage in visibility as detailed below. No flights at risk were seen from VP1 in the wind farm buffer beyond 2 km , even though coverage would have extended there to some extent, particularly when viewing up to the top of the eastern end of the Wee Fea ridge in 2018. However, no additional coverage in visibility is assumed in the workings here

The calculation of effective coverage of the wind farm buffer area is shown in Table D.1. The effective observation time across the wind farm area each month was calculated as the sum of the observation time from each VP multiplied by the proportion of the wind farm buffer visible from that VP (within a 2 km cut-off viewing distance from each VP and with an additional viewing distance of $2 \mathrm{~km}-2.5 \mathrm{~km}$ for VP3 only)

The wind farm buffer straddles the 2 km viewing arcs from the two VPs and the basic measurement of VP coverage is taken as the proportion of the wind farm buffer within 2 km that overlapped with the viewshed at 15 m above ground. Because VP1 was shifted eastwards between years, its coverage of the final wind farm buffer was greater in the second survey year:

- VP1, year 1 - 58.5% coverage at 15 m above ground
- VP1, year $2-81.5 \%$ coverage at 15 m above ground
- VP3, both years - 51.3 \% coverage at 15 m above ground

 flight, the coverage from VP3 was extended out to 2.5 km , estimated as follows:
 the flight segments was made by GIS with some estimation by direct measurement on the flight maps.
 length at risk height here (across the whole survey period) was $17,262 \mathrm{~m}$; applying the basic coverage of 95% gives the total at-risk flight out to 2 km of $18,170 \mathrm{~m}$
 appears reasonable, since the buffer is compact and relatively small.
- The wind farm buffer proportion within 2 km is 0.54 ; 95% coverage gives a total expected at-risk flight of $18,170 \mathrm{~m}$.
 implies 84% coverage - this has been rounded down to 80%, implying that four times more flight has been missed here than within 2 km.
- The wind farm buffer proportion at over 2.5 km is 0.08 ; zero coverage is assumed here.

The coverage from each VP for each season is tabulated below, indicating the additional VP3 cover as 0.304 , being the area proportion of $0.38 \times 80 \%$.
 watch hours. This occurred for most of the 2019 breeding season and for occasional watches in the 2019/20 non-breeding season.

Table D. 1 Effective coverage of the wind farm buffer for hen harrier from each VP at the 15 - 150 meight band

Month	VP1 observation time (hrs)	Multiplier < 2 km	Effective VP1 hours	VP3 observation time (hrs)	Multiplier $<2 \mathrm{~km}$	Multiplier $\begin{aligned} & (2 \mathrm{~km}- \\ & 2.5 \mathrm{~km}) \end{aligned}$	Overall	Effective VP3 hours	TOTAL effective hrs from both VPs ${ }^{5}$
Apr-18	6	0.585	3.51	6	0.513	0.304	0.817	4.90	8.41
May-18	6	0.585	3.51	6	0.513	0.304	0.817	4.90	8.41
Jun-18	6	0.585	3.51	6	0.513	0.304	0.817	4.90	8.41
Jul-18	9	0.585	5.27	9	0.513	0.304	0.817	7.35	12.62
Aug-18	9	0.585	5.27	9	0.513	0.304	0.817	7.35	12.62
			21.06					29.41	50.47
Sep-18	6	0.585	3.51	6	0.513	0.304	0.817	4.90	8.41
Oct-18	6	0.585	3.51	6	0.513	0.304	0.817	4.90	8.41
Nov-18	6	0.585	3.51	6	0.513	0.304	0.817	4.90	8.41
Dec-18	6	0.585	3.51	6	0.513	0.304	0.817	4.90	8.41
Jan-19	6	0.585	3.51	6	0.513	0.304	0.817	4.90	8.41
Feb-19	6	0.585	3.51	6	0.513	0.304	0.817	4.90	8.41
Mar-19	6	0.585	3.51	6	0.513	0.304	0.817	4.90	8.41
			24.57					34.31	58.88
Apr-19	9	0.815	7.34	9	0.513	0.152	0.665	5.99	10.44 (cap)
May-19	12	0.815	9.78	12	0.513	0	0.513	6.16	12.00 (cap)
Jun-19	15	0.815	12.23	15	0.513	0	0.513	7.70	15.00 (cap)
Jul-19	13.25	0.815	10.80	15	0.513	0.061	0.574	8.61	15.47 (cap)

'cap' means some or all watches capped at 3 hours when being manned simultaneously from both VPs.

Month	VP1 observation time (hrs)	Multiplier $<2 \text { km }$	Effective VP1 hours	VP3 observation time (hrs)	Multiplier $<2 \mathrm{~km}$	Multiplier (2 km - 2.5 km)	Overall	Effective VP3 hours	TOTAL effective hrs from both VPs ${ }^{5}$
Aug-19	16.75	0.815	13.65	15	0.513	0.061	0.574	8.61	18.32 (cap)
			53.79					37.06	71.23
Sep-19	6	0.815	4.89	6	0.513	0.304	0.817	4.90	9.79
Oct-19	6	0.815	4.89	6	0.513	0.304	0.817	4.90	9.79
Nov-19	6	0.815	4.89	6	0.513	0.152	0.665	3.99	7.90 (cap)
Dec-19	6	0.815	4.89	6	0.513	0.304	0.817	4.90	9.79
Jan-20	6	0.815	4.89	6	0.513	0.304	0.817	4.90	9.79
Feb-20	6	0.815	4.89	6	0.513	0.304	0.817	4.90	9.79
Mar-20	6	0.815	4.89	6	0.513	0.152	0.665	3.99	7.90 (cap)
			34.23					32.49	64.75

D.1.2 Extrapolations from observations to a full year

 August 2019 in Table D. 3 and for the pooled non-breeding season from September to March, in Table D.4.

 inaccuracies in drawing flight paths. However, the overall credibility was looked at in two different ways:
 non-breeding season and comparing to the overall times recorded within the flight buffers - this gave $135,648 \mathrm{~m}$ timed at 15,020 seconds, giving an average flight speed of $9.0 \mathrm{~ms}^{-1}$.
 speeds - this gave an average of $10.7 \mathrm{~ms}^{-1}$ from 36 flights.
 the approach taken

 2018 breeding season.

Table D. 2 Extrapolation of observed risk for the 2018 breeding season for the $\mathbf{1 5} \mathbf{- 1 5 0} \mathbf{~ m}$ recording height band

a	b	c	d	e
Month	Available flying hours for hen harriers (at 58.8 ${ }^{\circ}$ latitude per Band, 2012)	Effective VP hours	Seconds observed at risk (20 - 150 m) within the wind farm buffer	Extrapolated time at-risk (15- 150 m) (seconds) (d x b/c) $\times 1.06$ * *(to allow for flight at 15 20 m)
April	432	8.41	147	8,004
May	522	8.41	0	0
June	549	8.41	158	10,933
July	547	12.62	371	17,045
August	480	12.62	135	5,443
			Sum of monthly totals	41,425
Single breeding season calculation	2,530	50.47	811	43,094

Table D. 3 Extrapolation of observed risk for the 2019 breeding season for the 15 - $\mathbf{1 5 0} \mathbf{~ m}$ recording height band

a	b	C	d	e
Month	Available flying hours for hen harriers (at $58 . \mathbf{8}^{\circ}$ Iatitude per Band, 2012)	Effective VP hours	Seconds observed at risk within the wind farm buffer	```Extrapolated time at-risk (seconds) (d x b/c)```
April	432	10.44	343	14,193
May	522	12.00	135	5,872
June	549	15.00	759	27,779
July	547	15.47	857	30,302
August	480	18.32	252	6,603
			Sum of monthly totals	84,749
Single breeding season calculation	2,530	71.23	2,346	83,327

Table D. 4 Extrapolation of observed risk for the pooled non-breeding seasons for the $15 \mathbf{- 1 5 0} \mathbf{m}$ recording height band

a	b	c	d	e
Month	Available flying hours for hen harriers (at 58.8° latitude per Band, 2012)	Effective VP hours	Seconds observed at risk within the wind farm buffer	```Extrapolated time at-risk (seconds) (d x b/c)```
September	387	18.20	10	213
October	319	18.20	629	11,025
November	236	16.31	0	0
December	198	18.20	94	1,023
January	220	18.20	0	0
February	258	18.20	0	0
March	365	16.31	316	7,072
			Sum of monthly totals	19,333
Single non-breeding season calculation	1,983	123.62	1,049	16,827

 the number of months with zero observed risk)

D. 2 CALCULATION OF COLLISION RISK

 total extrapolated flight times for the wind farm buffer area for the $15-150 \mathrm{~m}$ height band (Table D. 2 and Table D.3) have been used to derive values of bird occupancy of the
 used. Applying an average flight speed (10 metres per second for hen harrier) gives the flight length through the rotor swept volume and dividing by the effective rotor depth (maximum blade depth plus bird length) gives the number of passes through the rotors.

A turbine operational efficiency factor of 85% has been applied.

The Band Model percentage (i.e. the likelihood of a bird that flies through the rotors actually being hit) has then been applied; this is 7.5% (Table D.6).

The accepted avoidance rate for hen harrier has then been applied; this is 99 \% (SNH, 2018a).

Table D. 5 Hen harrier collision risk estimates for the Proposed Development by timed flights across the wind farm buffer area

Ref.		2018 breeding season $15-150 \mathrm{~m}$	2019 breeding season $15-150 \mathrm{~m}$	Pooled non-breeding seasons 15 - 150 m
a	Ground area of wind farm buffer	$\begin{aligned} & 1.3763 \mathrm{~km}^{2} \text { or } \\ & 1.3763 \times 10^{6} \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & 1.3763 \mathrm{~km}^{2} \text { or } \\ & 1.3763 \times 10^{6} \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & 1.3763 \mathrm{~km}^{2} \text { or } \\ & 1.3763 \times 10^{6} \mathrm{~m}^{2} \end{aligned}$
b	Height of risk band	$15-150 \mathrm{~m}=135 \mathrm{~m}$	$15-150 \mathrm{~m}=135 \mathrm{~m}$	$15-150 \mathrm{~m}=135 \mathrm{~m}$
C	Volume of wind farm buffer $(a \times b)$	$1.8508 \times 10^{8} \mathrm{~m}^{3}$	$1.8508 \times 10^{8} \mathrm{~m}^{3}$	$1.8508 \times 10^{8} \mathrm{~m}^{3}$
d	Rotor diameter	136 m	136 m	136 m
e	Rotor depth (maximum)	4.2 m	4.2 m	4.2 m
f	Bird length	0.48 m	0.48 m	0.48 m
g	Effective rotor depth $(e+f)$	4.68 m	4.68 m	4.68 m

Ref.		2018 breeding season $15-150 \mathrm{~m}$	2019 breeding season 15-150 m	Pooled non-breeding seasons 15 - 150 m
h	Effective rotor volume per turbine $\left([\mathrm{d} / 2]^{2} \times \mathrm{pi} \times \mathrm{g}\right)$	$6.7996 \times 10^{4} \mathrm{~m}^{3}$	$6.7996 \times 10^{4} \mathrm{~m}^{3}$	$6.7996 \times 10^{4} \mathrm{~m}^{3}$
i	Total rotor volume for 6 turbines $(h \times 6)$	$4.0797 \times 10^{5} \mathrm{~m}^{3}$	$4.0797 \times 10^{5} \mathrm{~m}^{3}$	$4.0797 \times 10^{5} \mathrm{~m}^{3}$
j	Rotor volume as a proportion of flight buffer (j / c)	0.002196	0.002196	0.002196
k	Total extrapolated time for hen harriers at risk (from Table D.2, Table D. 3 and Table D.4)	41,425 secs	84,749 secs	16,827 secs
m	Time within rotor volume $(k \times j)$	91 secs	186 secs	37 secs
n	Equivalent flight length within rotor volume at $10 \mathrm{~m} / \mathrm{sec}$ $(m \times 10)$	910 m	1,861 m	370 m
p	No. passes through rotors $(\mathrm{n} / \mathrm{g})$	194	398	79
q	No. passes through rotors at 85% operational efficiency ($\mathrm{p} \times 0.85$)	165	338	67
r	No. passes expected to collide at Band Model \% of 7.5% ($q \times 0.075$)	12.4	25.4	5.04
s	Number of collisions at 99% avoidance rate ($\mathrm{r} \times 0.01$)	0.124	0.254	0.050

Table D. 6 Band model percentage calculation for hen harrier (the probability of collision for a single rotor transit)

APPENDIX E WHITE-TAILED EAGLE COLLISION RISK WORKINGS

This appendix presents a description of the collision risk calculations undertaken for white-tailed eagle. Full details of the white-tailed eagle flight activity data for each year used in these calculations is shown in Appendix 7.1 Ornithology Technical Report. The 'Birds using the windfarm airspace' model is the most appropriate for this species.

Figure E. 1 shows the number of birds per hour within the flight buffer in each month of survey, from April 2018 to March 2020. Apart from the spike in activity in May 2019, monthly rates of sightings were low, and the overall birds-per-hour figure was similar in each survey year. There were fewer birds in Year 1 (April 2018 to March 2019) than in Year 2, partly because of the lower hours watched from the VPs. On an hourly basis, white-tailed eagles were seen in the flight buffer in Year 1 at a rate of 0.07 birds per hour; in Year 2 (excluding the May spike) they were seen at 0.08 birds per hour.

Figure E. 1 White-tailed eagle: birds-per-hour within the flight buffer area for each month of the two-year survey period (all age classes combined)

The age classes seen on Hoy were

- adult (six years and older);
- sub-adult (one year to five years old); and
- juvenile (less than one year old i.e. birds in their first year).

There was one confirmed juvenile sighting in December 2018 and two further observations of wing-tagged immatures in March 2019 that may have been juveniles. Of the subadults that were seen well enough to be aged more precisely, all were two - three years olds. All young birds that were not confirmed as juveniles have been counted as subadults.

There was a distinct difference between years in the relative proportions of the different age groups, with adults as one out of six birds (17%) in Year 1 , and eight out of 17 (47%) in Year 2. The adult proportion in Year 2 would increase to six out of $10(60 \%)$ if all birds in the May 2019 spike were excluded.

Such a difference in adult proportion each year is not expected from the known birds on Hoy, which was similar each year. In 2018 there was one breeding adult pair, fledging two young, with at least one sub-adult present. In 2019 there was one breeding adult pair, fledging one young with at least one sub-adult present. This disparity in the proportion of adults observed in the flight buffer area is likely to be due either to the random nature of the small samples, or possibly because additional, non-breeding adults were present at times from May 2019 onwards.

E. 1 EXTRAPOLATION OF DATA

E.1.1 Effective hours watched across the wind farm buffer

For white-tailed eagle the effective VP hours are taken as the same as those for hen harrier (Table D.1 above), as explained in Section D.1.1.

E.1.2 Extrapolations from observations to a full year

An estimate of the bird occupancy within the flight risk volume is required as an input for this model. The details of each white-tailed eagle flight line for 2018/19 and 2019/20, showing the observed times at each height band estimated within the wind farm buffer are shown in Appendix 7.1 Ornithology Technical Report. Bird occupancy has been calculated based on the observed flight time at risk within the whole risk height band. These values have then been extrapolated on a seasonal basis, using the total flying time available and the total effective observation hours (Table D.1) from the two years of survey work. The breeding season is taken as February to August and the non-breeding season from September to January (SNH, 2017). Bird occupancy for the $15-150 \mathrm{~m}$ height band is shown in Table E.1.

The time at risk height within the wind farm buffer was calculated for each flight line using GIS, by comparing the length of the drawn flight paths at risk height within the whole flight buffer to its clipped length within the wind farm buffer. The overall time at risk height for each flight, as recorded in the field, was then attributed to the wind farm buffer in proportion to the flight length within it.

 comparison, a single, pooled annual calculation results in an overall risk that is about 7% lower than this seasonal approach.

Figure E. 2 White-tailed eagle: birds per hour each month within the overall flight buffer

Table E. 1 Extrapolation of all white-tailed eagle observed risk for both survey years combined for the 15 - $150 \mathbf{m}$ recording height band

a	b	c	d	e
Month	Available flying hours for whitetailed eagle (at 58.8° Iatitude per Band, 2012)	Effective VP hours	Seconds observed at risk within the wind farm buffer	Extrapolated time at-risk (seconds) (d $\times \mathrm{b} / \mathrm{c}$)
February	258	18.20	133	1,885
March	365	16.31	422	9,444
April	432	18.85	0	0
May	522	20.41	314	8,031
June	549	23.41	85	1,993
July	547	28.09	0	0

a	b	c	d	e
Month	Available flying hours for whitetailed eagle (at 58.8° latitude per Band, 2012)	Effective VP hours	Seconds observed at risk within the wind farm buffer	Extrapolated time at-risk (seconds) (d $\times \mathrm{b} / \mathrm{c}$)
August	480	30.94	0	0
Breeding season calculation (February to August)	3,153	156.21	954	19,256
September	387	18.2	92	1,956
October	319	18.2	0	0
November	236	16.31	0	0
December	198	18.2	0	0
January	220	18.2	0	0
Non-breeding season calculation (September to January)	1,360	89.11	92	1,404

E. 2 CALCULATION OF COLLISION RISK

 extrapolated flight times for the wind farm buffer area for the $15-150 \mathrm{~m}$ height band (Table E.1) have been used to derive values of bird occupancy of the rotor swept volume.
 number of passes through the rotors.

 Percentage calculation table (Table E.3).

A turbine operational efficiency factor of 85% has been applied.

The Band Model percentage (i.e. the likelihood of a bird that flies through the rotors actually being hit) has then been applied; this is 12.5% (Table E .3).

The accepted avoidance rate for white-tailed eagle has then been applied; this is 95% (SNH, 2018a).

Table E. 2 White-tailed eagle collision risk estimates for the Proposed Development by timed flights across the wind farm buffer area

Ref.		All birds in the breeding season at 15-150 m	All birds in the non-breeding season at $15-150 \mathrm{~m}$
a	Ground area of wind farm buffer	$\begin{gathered} 1.3763 \mathrm{~km}^{2} \text { or } \\ 1.3763 \times 10^{6} \mathrm{~m}^{2} \end{gathered}$	$\begin{aligned} & 1.3763 \mathrm{~km}^{2} \text { or } \\ & 1.3763 \times 10^{6} \mathrm{~m}^{2} \end{aligned}$
b	Height of risk band	$15-150 \mathrm{~m}=135 \mathrm{~m}$	15-150 m = 135 m
C	Volume of wind farm buffer $(a \times b)$	$1.8508 \times 10^{8} \mathrm{~m}^{3}$	$1.8508 \times 10^{8} \mathrm{~m}^{3}$
d	Rotor diameter	136 m	136 m
e	Rotor depth (maximum)	4.2 m	4.2 m
f	Bird length	0.8 m	0.8 m
g	Effective rotor depth $(e+f)$	5.0 m	5.0 m
h	Effective rotor volume per turbine $\left([\mathrm{d} / 2]^{2} \times \mathrm{pi} \times \mathrm{g}\right)$	$7.2633 \times 10^{4} \mathrm{~m}^{3}$	$7.2633 \times 10^{4} \mathrm{~m}^{3}$

Ref.		All birds in the breeding season at $15-150 \mathrm{~m}$	All birds in the non-breeding season at $15 \text { - } 150 \text { m }$
i	Total rotor volume for 6 turbines $(h \times 6)$	$4.3587 \times 10^{5} \mathrm{~m}^{3}$	$4.3587 \times 10^{5} \mathrm{~m}^{3}$
j	Rotor volume as a proportion of flight buffer (j / c)	0.002346	0.002346
k	Total extrapolated time for white-tailed eagles at risk (from Table E.1)	19,256 secs	1,404 secs
m	Time within rotor volume $(k \times j)$	45 secs	3.3 secs
n	Equivalent flight length within rotor volume at $7 \mathrm{~m} / \mathrm{sec}$ $(m \times 7)$	316.2 m	23.1 m
p	No. passes through rotors (n / g)	63.2	4.6
q	No. passes through rotors at 85\% operational efficiency ($\mathrm{p} \times 0.85$)	53.7	3.9
r	No. passes expected to collide at Band Model \% of 12.5 \% ($q \times 0.125$)	6.71	0.49
S	Number of collisions at 95 \% avoidance rate ($\mathrm{r} \times 0.05$)	0.336	0.024

Table E. 3 Band model percentage calculation for white-tailed eagle (the probability of collision for a single rotor transit)

APPENDIX F GREAT SKUA COLLISION RISK WORKINGS

This appendix presents a description of the workings of the collision risk calculations undertaken for great skua. The accompanying spreadsheet 'Annex 3 Great Skua Data provides full details of the data used in the calculations and the delated workings of the collision risk calculations for 2018 and 2019.

The 'Birds using the windfarm airspace' model is the most appropriate for this species. An estimate of the bird occupancy within the flight risk volume is required as an input for this model. Bird occupancy has been calculated based on the flight length per cubic metre of airspace. The bird density value for each snapshot count zone for each month was converted to flight length by applying an average bird flight speed of 14 metres per second (i.e. at a density of one bird per km^{2}, the flight length is 14 metres per second per km^{2}). This has then been extrapolated for each month based on the total flying time available (taken from the SNH 'offshore model' spreadsheets at latitude 58.8° (Band, 2012)) to give a total monthly flight length within the risk height band.

The flight length through the rotors assumes even distribution of activity throughout the airspace of the $15-150 \mathrm{~m}$ height band; it is arrived at simply by applying the proportion of the effective rotor volume to the overall volume of the flight zone at that height. Dividing by the effective rotor depth (maximum blade depth plus bird length) gives the number of passes through the rotors.

A turbine operational efficiency factor of 85% has been applied

The Band Model percentage (i.e. the likelihood of a bird that flies through the rotors actually being hit) has then been applied; this is 6.6% (Table F.1).

The accepted avoidance rate for great skua has then been applied; this is 99.5 \% (SNH, 2018a).

Collision risk has then been summed across all months to provide a collision risk estimate for each snapshot recording zone.

This approach is conceptually straightforward - it has been tested against the more complex SNH 'offshore model' spreadsheets (Band, 2012) and, based on the same input parameters, was found to produce an answer that was approximately 1.3% higher. Such a similar result in both methods indicates the robustness of this simpler approach.

Table F. 1 Band model percentage calculation for great skua (the probability of collision for a single rotor transit)

NoBlades	3		Calculation of alpha and p(collision) as a function of radius						Dow nw ind:	
			r/R	c/C	α	Upw ind:				
MaxChord	4.20	m				collide			collide	
Pitch (degrees)	15		radius	chord	alpha	length	p (collision)		length	p (collision)
Species name	Great Skua		0.00				1.000			1.000
BirdLength	0.56	m	0.05	0.73	3.28	14.95	0.641		13.37	0.573
Wingspan	1.36	m	0.10	0.79	1.64	8.34	0.357		6.62	0.284
F: flapping (0) or gliding (+1)	0		0.15	0.88	1.09	6.34	0.272		4.43	0.190
Proportion of flights upw ind	50\%	\%	0.20	0.96	0.82	5.35	0.229		3.26	0.140
Bird speed	14	$\mathrm{m} / \mathrm{sec}$	0.25	1.00	0.66	4.64	0.199		2.46	0.106
Rotor Radius	68	m	0.30	0.98	0.55	3.98	0.171		1.85	0.079
Rotation Speed	12	rpm	0.35	0.92	0.47	3.38	0.145		1.38	0.059
Rotation Period	5.00	sec	0.40	0.85	0.41	2.90	0.124		1.05	0.045
			0.45	0.80	0.36	2.61	0.112		0.87	0.037
			0.50	0.75	0.33	2.37	0.102		0.74	0.032
Bird aspect ratio: β	0.41		0.55	0.70	0.30	2.17	0.093		0.65	0.028
			0.60	0.64	0.27	1.96	0.084		0.57	0.025
Integration interval	0.05		0.65	0.58	0.25	1.78	0.076		0.60	0.026
			0.70	0.52	0.23	1.62	0.069		0.63	0.027
			0.75	0.47	0.22	1.49	0.064		0.65	0.028
			0.80	0.41	0.20	1.35	0.058		0.67	0.029
			0.85	0.37	0.19	1.25	0.054		0.67	0.029
			0.90	0.30	0.18	1.11	0.047		0.66	0.028
			0.95	0.24	0.17	0.99	0.042		0.65	0.028
			1.00	0.00	0.16	0.56	0.024		0.56	0.024
		Overall p(collision) integrated over disk								
						Upw ind	8.9\%		Downwind	4.3\%
		Proportion upw ind: dow nw ind								
			50\%	50\%			Average	6.6\%		

APPENDIX G GREAT BLACK-BACKED GULL COLLISION RISK WORKINGS

This appendix presents a description of the workings of the collision risk calculations undertaken for great black-backed gull. The accompanying spreadsheet 'Annex 4 Great Blackbacked Gull Data' provides full details of the data used in the calculations and the related workings of the collision risk calculations for each year.

The 'Birds using the windfarm airspace' model is the most appropriate for this species. An estimate of the bird occupancy within the flight risk volume is required as an input for this model. Bird occupancy has been calculated based on the flight length per cubic metre of airspace. The bird density value for each snapshot count zone for each month was converted to flight length by applying an average bird flight speed of 14 metres per second (i.e. at a density of one bird per km^{2}, the flight length is 14 metres per second per km^{2}). This has then been extrapolated for each month based on the total flying time available (taken from the SNH 'offshore model' spreadsheets at latitude 58.8° (Band, 2012)) to give a total monthly flight length within the risk height band.

The flight length through the rotors assumes even distribution of activity throughout the airspace of the $15-150 \mathrm{~m}$ height band; it is arrived at simply by applying the proportion of the effective rotor volume to the overall volume of the flight zone at that height. Dividing by the effective rotor depth (maximum blade depth plus bird length) gives the number of passes through the rotors

A turbine operational efficiency factor of 85% has been applied.

The Band Model percentage (i.e. the likelihood of a bird that flies through the rotors actually being hit) has then been applied; this is 7.3% (Table G.1).

The accepted avoidance rate for great black-backed gull has then been applied; this is 98% (SNH, 2018a). However, there is strong empirical evidence that clearly indicates that there is much higher avoidance in this species. At present, SNCBs recommend use of a 99.5% avoidance rate for large gulls at offshore wind farms. This 99.5% avoidance rate is based on evidence from terrestrial wind farms, reviewed and evaluated thoroughly by the BTO (Cook et al, 2014; JNCC et al, 2014). A recent review by Furness (2019) concludes that it would be appropriate and more consistent for SNH to recommend use of avoidance rates of 99.5% for large gulls including great black-backed gull at terrestrial wind farms. The equivalent risk figures at 99.5% would simply be one quarter of those calculated at 98%.

Collision risk has then been summed across all months to provide a collision risk estimate for each snapshot recording zone.

This approach is conceptually straightforward - it has been tested against the more complex SNH 'offshore model' spreadsheets (Band, 2012) for great skua at this site and, based on the same input parameters, was found to produce an answer that was approximately 1.3% higher. Such a similar result in both methods indicates the robustness of this simpler approach.

Table G. 1 Band model percentage calculation for great black-backed gull (the probability of collision for a single rotor transit)

			Calculation of alpha and p (collision) as a function of radius							
NoBlades	3					Upw ind:			Dow nw ind:	
MaxChord	4.20	m	r/R	c/C	α	collide			collide	
Pitch (degrees)	15		radius	chord	alpha	length	p (collision)		length	p (collision)
Species name	Great Black-	-back	0.00				1.000			1.000
BirdLength	0.71	m	0.05	0.73	3.28	15.67	0.672		14.09	0.604
Wingspan	1.58	m	0.10	0.79	1.64	8.70	0.373		6.98	0.299
F: flapping (0) or gliding (+1)	0		0.15	0.88	1.09	6.58	0.282		4.67	0.200
Proportion of flights upw ind	50\%	\%	0.20	0.96	0.82	5.53	0.237		3.44	0.147
Bird speed	14	$\mathrm{m} / \mathrm{sec}$	0.25	1.00	0.66	4.78	0.205		2.61	0.112
Rotor Radius	68	m	0.30	0.98	0.55	4.10	0.176		1.97	0.084
Rotation Speed		rpm	0.35	0.92	0.47	3.49	0.149		1.49	0.064
Rotation Period	5.00	sec	0.40	0.85	0.41	3.05	0.131		1.20	0.051
			0.45	0.80	0.36	2.76	0.118		1.02	0.044
			0.50	0.75	0.33	2.52	0.108		0.89	0.038
Bird aspect ratio: β	0.45		0.55	0.70	0.30	2.32	0.099		0.80	0.034
			0.60	0.64	0.27	2.11	0.091		0.72	0.031
Integration interval	0.05		0.65	0.58	0.25	1.93	0.083		0.75	0.032
			0.70	0.52	0.23	1.77	0.076		0.78	0.033
			0.75	0.47	0.22	1.64	0.070		0.80	0.034
			0.80	0.41	0.20	1.50	0.064		0.82	0.035
			0.85	0.37	0.19	1.40	0.060		0.82	0.035
			0.90	0.30	0.18	1.26	0.054		0.81	0.035
			0.95	0.24	0.17	1.14	0.049		0.80	0.034
			1.00	0.00	0.16	0.71	0.030		0.71	0.030
			Overall p(co	sion) inte	ated over	disk				
						Upw ind	9.6\%		Dow nwind	5.0\%
			rtion upw ind	ow nw ind						
			50\%	50\%			Average	7.3\%		

Annex 1

 ㄱ․ . - N N

vp	Observer	Date	$\begin{array}{\|c\|} \hline \text { Original } \\ \hline \text { Flight line } \\ \text { ref } \end{array}$	Flight Ref No.	Species	$\begin{aligned} & \text { No. of } \\ & \text { birds } \end{aligned}$	incoming/ outgoing/ nonbreeders social flight / unknown	Site Ref.	Flight height summary	Total flight duration	Comment	
Diver VP2	suw	30_may-18	1	1	RH	1	incoming	Site G	level flight	6 min		
Diver VP2	suw	30_may-18	2	2	RH	1	incoming	sites north	steady height	4 min	lost looking into light	
Diver VP2	sJw	31_may-18	1		RH	1	incoming	Site B		4 min	appeared to land on loch	
Diver VP2	sJw	31-may-18	2	4	RH	1	incoming	Site G		5 min	headed west	
Diver VP2	SJW	31_may-18	3	5	RH	1	outgoing	Site G		4 min	gained height as approached Binga Fea ridge	
Diver VP2	SJW	31_may-18	4	6	RH	1	outgoing	Site B		3 min	looked as though came offl loch < 10 m	
Diver VP2	SJw	31_may-18	6	8	RH	1	incoming	Site G		4 min		
Diver VPla	sJw	03-Jul-18	2	11	RH	1	incoming	sites north	100-120m	6 min 52 sec	headed north-west over top of Withigill 120 m	
Diver VP1a	suw	03-Jul-18	3	12	RH	1	outgoing	Site B	mostly 100 m	9 min	bird had just taken off when first seen level flight, lost to view eas SPM's in scapa flow, 1ad and chick still on loch	
Diver VPla	sJw	03-Jul-18	3	15	RH	1	incoming	sites north		5 min		
Diver VP1a	SJW	03-Jul-18	5	17	RH	1	outgoing	Site \rfloor	150-0	8 min	looked as though landed in sea to north of Longhope	
Diver VP1a	suw	03-Jul-18	6	18	RH	1	outgoing	Site B	0-100m	10 min	took off from Site B, lost to view low over flow to east of Cava. Chick swimming in middle of loch	
Diver VP2	NH	04-Jul-18	2	20	RH	1	unknown	Site I	c.230m asl initially, dropping to 170 m asl	219s	Circling, and looking as if it might land at Site D, then heading off towards Site I. Lost near loch.	
Diver VP2	NH	04-Jul-18	8	26	RH	1	incoming	Site 6	250 mas	111s		
Diver VP2	NH	04-Jul-18	12	30	RH	2	incoming	Site C	0-116s: $230-270 \mathrm{mas}$ (variable)	1165	2 birds, bircling over Site A, first bird landing on lochan	
Diver VP2	NH	04-Jul-18	13	31	RH	1	incoming	sites north	0.588: 230-270m as ((variable)	58 s	2nd bird from previous flight line (12) continuing west	
Diver VP2	sJw	17.Jul-18	1	32	RH	1	incoming	sites north	150m	7 min 19 sec	incoming level flight for whole period see lost to view over shoulder	
Diver VP2	sJw	17-Jul-18	2	33	RH	1	outgoing	sites north	100 m dropping to $<50 \mathrm{~m}$ over Scapa Flow	10 min 18 sec	lost to view low over the flow	
Diver VP2	SJw	17-Jul-18	3	34	RH	1	incoming	sites north	75-100m	4 min 53 sec	north-west over top of Withigill 100 m	
Diver VP2	sJw	17-Jul-18	1	35	RH	1	incoming	sites orth	100-75	12 min 19 sec	lost to view to north	
Diver VP2	sJw	17-Jul-18	2	36	RH	1	incoming	Site I	75-50	4 min 11 sec	dropping from view heading west over heldale valley	
Diver VP1a	sJw	19.Jul-18	1	38	RH	1	incoming	sites north	100 m	4 min 14 sec	Incoming level flight lost to view north	
Diver VP1a	sJw	19.Jul-18	2	39	RH	2	outgoing	Site B	0.100m		both took off from Site B, circled and headed out into flow, lost to view	
Diver VPla	SJW	19.Jul-18	4	41	RH	1	outgoing	Site A	<5-50m	4 min 37 sec	presumed adult from Site A	
Diver VP1a	sJw	19.Jul-18	6	43	RH	2	incoming	sites north	50-100	8 min 51 sec	wide circling tight birds calling lost over top of withigill	
Diver VP1a	SJw	19.Jul-18	1	45	RH	1	incoming	Site C	75-0	4 min 33 sec	came in and landed on loch Site C	
Diver VP1a	sJw	19.Jul-18	2	46	RH	2	incoming	Site H	50-25	2 min 53 sec	dropping in height towards end of flight lost to view	
Diver VPla	sJw	19.Jul-18	3	47	RH	1	outgoing	sites north	100	9 min 29 sec	out going lost to view Brims - sea	
Diver VPla	sJw	19.Jul-18	1	49	RH	1	incoming	Site J	100-0m	4 min 53 sec	in coming flight with fish, looked as though landed Site J	
Diver VPla	SJw	19.Jul-18	2	50	RH	1	incoming	Site B	${ }^{50}$-0m	1 min 3 sec	in coming flight landed Site B	
Diver VP1a	sJw	19.Jul-18	3	51	RH	1	incoming	Site 6	${ }^{1200}$	2 min 49 sec	lost to view over sky line	
Diver VP1b	NH	07-Aug-18	3	54	RH	2	outgoing	Site 6	$\begin{aligned} & \text { 0-120s: } 300 \mathrm{~m} \\ & 120 \mathrm{~s}-160 \mathrm{~s}: 240 \mathrm{~m} \end{aligned}$	1605	Lost eventually.	
											across north-astr, ising at Wee Fea and joining 7 other birds beyond,	
	au	07-Aug-18	10	57	RH	1		sites north	150-175m	7 min	circling widely	
	au	07-Aug-18	14	58	RH	1	incoming	Site H	around VP and still c. 150 asl where lost	3 min	probably in to site H	
	au	07-Aug-18	19	59	RH	1	incoming	Site H	found just after take-off; rising in, but staying <150 as	5 min	in to Site A with fish	
	AU	07-Aug-18	20	60	RH	1	incoming	Site I	to no more than 50 m across neck and not really rising until swing back N to max 150 ass; heading slightly down when out of sight behind hill	7 min	In to Site 1	
	AU	07-Aug-18	21	61	RH	1	incoming	Site 6	Rising from Site lonwards to 250 as	5.5 min	in towards Site G	
	AU	07-Aug-18	22	62	RH	1	incoming	Site H	rising to 200 as	4.5 min	in to Site H with fish	
	AU	07-Aus-18	23	63	RH	1	incoming	Site H	rising to $200-225$ as lacross Bakingstone ridge, then lower	4.5 min	in to Site H with fish	
			23							4.5 min	in to site H with ish	
	au	07-Aug-18	27	64	RH	$1+1$	incoming	Site H	175 asl before levelling past Binga fea	11 mins	in to Site H with f fish	
	au	07-Aug-18	28	65	RH	2	incoming	Site H	rising to $250-300$ asl in past Binga Fea, then gradually down	8 mins	in to Site H	
	AU	07-Aug-18	29	66	RH	3	incoming	Site I	Rising to 250 asl and then in	3 mins	2 landed on Site l one out of sight low at West end	
									0-60s: Dropping from 2000 to 150 m			
Diver VP3	NH	08-Aug-18	1	67	RH	2	incoming	Site 6	$60-100 \mathrm{~s}$: Climbing fro 150 m to 270 m 100-360s: 270 m	3605	Birds heading towards Site 6 .	
Diver VP3	NH	08-Aug-18	3	69	RH	1	incoming	Site 6	0.1725:300m	1725		
Diver VP3	NH	08-Aug-18	5	71	RH	1	unknown	Site 6	0:809: 322 m	805		
Diver VP3	NH	08-Aug-18	2	73	RH	1	outgoing	Site 6	$\begin{aligned} & \text { 0-120s: 200m } \\ & \text { 120-160s:120m } \end{aligned}$	1605	Heading from Site G to sea. Lost against vegetation.	
Diver Vplc	au	09.Aus 18	1	74	RH	1	incoming	Site G	dived away a bit lower as NX made a	2 mins	In to Site G - WITH FISH	
Diver Vplc			2	75	RH	1	outgoing	Site G	Gently down; steeper at end and low	5 mins	probably out from Site G	
	AU	09-Aug-18										
Diver VP1c	au	09-Aug-18	3	76	RH	1	outgoing	Stie G	Gradually down from Wee Fea onwards; lost still descending	3.5 mins	Out from Site G	
Diver VP1c	AU	09-Aug-18	4	77	RH	1	outgoing	Site G	rising to 350 asl and staying at 300 asl well out towards shore	3 mins	Out from Site G	
Diver VP1c	au	09-Aug-18	5	78	RH	2	non-breeding social flight	Site G	descending gradually to 250 asl on approach to Site G , but not alighting there and away down heading offshore where lost against the water; longcalling from Site H a little later may mean that they went in there	11 mins	Non-breeders - InOut Site G	
Diver VP1c	AU	09-Aug-18	6	79	RH	2	non-breeding social flight	Site G	down steeply to alight	2 mins	Non-breeders in to Site G; they stayed there for the whole of the next watch	
Diver VP4a	au	09-Aug-18	7	80	RH	1 ad	outgoing	Site G	low around lochans, then rising slightly away	several	Out from Site G	
Diver VP4a	AU	09-Aus-18	8	81	RH	1 ad	incoming	sites north	gradually rising and lost at >300 asl	several	headed north with fish	
Diver VP4a	au	09-Aug-18	9	82	RH	1 ad	outgoing	Site G	low away and lost against far slope; not seen rising above skyline	<1 min	Out from Site G	
Diver VP4a	AU	09-Aug-18	10	83	RH	1 ad	outgoing	Site G	out at 250 asl i.e. against ground all the way from VP	3 mins	Out from Site G	
Diver VP4a	AU	09-Aug-18	11	84	RH	1 ad	incoming	Site G	came from below Sky Fea summit	1 min	In to Site G with fish	
Diver VP4a	au	09-Aug-18	13	86	RH	1	non-breeding social flight	Site G		<1 min	single non-breeder just seen arriving to Site G	
Diver VP4a	Au	09-Aug-18	14	87	RH	2	non-breeding social flight	Site G	around low, then out W at $20-50 \mathrm{~m}$ and gradually down away offshore	5 min	Non-breeders out from Site G	
Diver VP4a	au	09-Aug-18	15	88	RH	1	outgoing	Site G	rising slightly to 275-300 asl then long descent to alight in Mill Bay	5 min	Out from Site G	
Diver VP4a	Au	09-Aug-18	16	89	RH	1	outgoing	Site G	out at 275 asl and very gradually down; lost descending more steeply at end against S Walls	6 min	Out from Site G	
Diver VP4a	au	09-Aug-18	17	90	RH	2	non-breeding social flight	Site	out more or less level out of sight to N	everal	Non-breeders out from Site G - heard for a while then found exiting lochan area	
Diver VP4b	s.w	21_Aug-18	1	91	RH	1	outgoing	Site 6	10-120	12 mins		
Diver VP4b	s.w	21_Aug-18	2	92	RH	1	incoming	Site 6	100-0	3 mins	landed with fish, straight to chick with fish, larger of the two chicks got the fish	
Diver VP4b	s.w	21_Aug-18	3	93	RH	2	incoming	Site 6	50.0	1 min	landed on loch, 5 ads now on one loch	
											5 ads all took of from loch birds broke up into individuals, only able to	
${ }^{\text {Diver VP4b }}$	s.w	21_Aus-18	4	94	RH	5	outgoing	Site 6	0-150	15 mins	follow the one	
Diver VP4b	s.w	21_Aug-18	5	95	${ }^{\text {RH }}$	1	incoming	Site 6	$100-0$	4 mins	landed on loch now two ads and two chicks on loch	
Diver VP4b	s.w	21_Aug-18	1	96	RH	5	outgoing	Site G	5.75 m	4 mins	appeared to have taken off from large loch, lost to view down burn of ore	
Diver VP4b	ssw	21_Aug-18	3	98	RH	1	incoming	sites north	${ }^{1000}$	3 mins	lost to view over head heading towards withigill	
Diver VP4b	siw	21_Aug-18	4	99	RH	2	outgoing	Site G	20-100m	5 mins	lost to view east of wee fea	
Diver VP4b	s.w	21_Aug-18		100	RH	2	incoming	Site G	20-0m	2 mins	incoming flight landed on loch	
Diver VP1c	SJW	22_Aug-18	1	101	RH	1	incoming	Site G		7 mins		
Diver VP1c	s.w	22_Aug-18	2	102	RH	,	outgoing	Site J	75-100	6 mins	gained height flying south	
Diver VP1c	siw	22_Aug-18	3	103	RH	1	incoming	Site G		3 mins		
Diver VP1c	siw	22_Aug-18	5	105	RH	1	incoming	Site H	75-0	4 mins	incoming flight with fish to chick Site H	
Diver VP5	S.W	23_Aug-18	1	${ }_{106}$	RH	1	outgoing	Site G		3.5 min		
Diver VP5	s.w	23_Aug-18	2	107	RH	2	unknown	Site G	75-100	5 min	pair very vocal	
Diver VP5	s.w	23_Aug-18	3	108	RH	1	non-breeding social flight	Site H	100-0	2.5 min	landed on Site H, went to west end of loch away from adults with chicks	
Diver VP5	siw	23 Aug-18	4	109	RH	1		sites north		5 min	circled over Site H continued to nor	
Diver VPs	siw	23_Aug-18	5	110	R ${ }^{\text {H }}$	1	unknown	sites north	50-120	6 min	vocal adult	
Diver VP1c	SIW	23_Aug-18	1	111	RH	1	incoming	Stie G		4 min	lost dropping into Site G	
Diver VP1c	siw	23-Aug-18	2	112	RH	+	outgoing	Site H	0-100m	5 min	took off Site H	
Siver Vp1c	S.W	${ }_{2}^{23}$ 23 Aug 4 -18 18	${ }_{4}$	111 114	${ }_{\text {RH }}^{\text {RH }}$	1	Unknown	Site J Site G	75-1000 $100-50 \mathrm{~m}$	6 min	over towards Site J with fish, presumed incoming to Site G as dropping	

VP name	observer	Date	$\underbrace{\text { sat }}_{\substack{\text { Trime } \\ \text { sat }}}$	$\mathrm{T}_{\substack{\text { Time } \\ \text { fins }}}^{\text {den }}$	Total	$\underbrace{\substack{\text { Tefered }}}_{\text {Timefirst }}$	Oritinalifight	Fligh Ret	Species	${ }_{\substack{\text { No．}}}^{\substack{\text { Notot } \\ \text { birs }}}$		incoming	Site Ret	Filght height summar	Total light duration	Commen
Vp beween site 18.51	s．w	${ }^{30}$ Nay 19	0450	0750	3	0540	1	1	RH	2	${ }_{50 m}$	ineming	Stiod	ciriced thend dopeas heightrand lanted	1808 sec	into Stied
Vp bemeen site 18.51	s．w	3^{30} May＿19	0450	0750	3	07：10	2	2	日H	2	0	outging	Stic		240800	
Vp beween site 18.51	s．w	3^{30} Mey＿19	0450	0750	3	0770	3	3	هн	1	100 m	incoming	Stie ${ }^{\text {e }}$	landedodolochan	115 seo	
VPbemeen sitit 18.51	s．w	${ }^{30}$ Nay＿19	0820	1120	3	0831	1	4	${ }_{\text {日H }}$	1	75 m	ineming	Stec	75 m － 0	588 ec	
Vp beemenen sitie 18.51	s．w	${ }^{30}$ May＿19	0820	1120	3	0901	3	5	${ }_{\text {RH }}$	2	150	incoming	Sle ${ }^{\text {a }}$	150.0	63 sec	Calliga anoed Sties
Vp beween site 18.51	sww	30．May 19	0820	1120	3	0904	4	6	${ }_{\text {вH }}$	2	75	incoming	SleA	75.0	18 sec	landes Stea
VP beteen sitie 18.51	s．w	$3{ }^{30}$ May 19	0820	1120	3	0935	5	7	${ }_{\text {пH }}$	2	40	outoging	SieA	40.150	190800	Oeosumed Site Apair，out oer LIness
Vp beween site 18.51	s．w	${ }^{30}$ Nay＿19	0820	1120	3	1027	8	8	вн	1	150		Stiog	Ievel liont	1808 se	overesky Feateoding west
VPbeween sitie 18.51	s．w	30 May＿19	0820	1120	3	1035	9	$\stackrel{ }{9}$	${ }_{\text {8H }}$	1	100	inoming	Stie ${ }^{\text {B }}$		1288 sec	landed Stie B
Lowersty Fea	${ }_{\text {aU }}$	11＿Lune19	18.55	21：00		20.05	1	10	RH	1	waer	oulogng	Sle A	ate		
Lowersty fea	av	11．June－19	18.55	$21: 40$		2025	2	${ }^{11}$	RH	1	water	ousang	Ster	Oifsie－		
Lener Sty fea	aU	11／sune＿19	18.55	$21: 30$		21.28	Sex	12	${ }^{\text {RH }}$	1	water	outgong	Sile ${ }^{\text {e }}$			Hen
	s．w	3 3．uy＿19	0645	0945		0742	析	13	${ }^{\text {RH }}$	1	water	ougong	Stie ${ }^{\text {e }}$	0.100 m	${ }^{6}$ min	
	sww	${ }^{\text {3 }}$－uy＿19	0645	0945		08.00	4	14	RH	1	100m	incoming	Stie	100.0 m	4 min	
	s．w	3 3．uy＿19	06.45	0945		08：10	$\begin{gathered} 5 / 6 \text { (just digitise } \\ \text { as one single } \\ \text { flight) } \end{gathered}$	15	вн	2	${ }_{150 m}$	inout	Stie A	150－0．150m	9 mis	landed Site A，four birds now on loch．pair which was on loch being very ，the Pair remained on loch
	ssw	3．3u＿19	0645	0945		0830	，	16	${ }^{\text {RH }}$	1	10	incoming	Stiod	10m．om	18 seas	laneod Sile D
	s．w	3.3 uly 19	${ }_{0645}$	0945		0904	8	${ }^{17}$	${ }^{\text {日H }}$	1	5	oulgang	Stie A	5． 5150 m	5 mins	
Bakigstone fill	au	2 2．Juy 19	16.45	17.15	0.5	16.55	1	18	${ }^{\text {日H }}$	1	50 as	inoming	Stien	İsing justeroughtio cosss inge		wift st procobevy in Stiter
Bakissomentilw	au	22. Juy 19	17：15	17.50		1725	2	19	${ }^{\text {日 }}$	1	water	ousong	Ster	staped dow out wer i ise		
Bakigsone till W	${ }_{\text {aU }}$	22 －uv＿19	17：15	17.50		1733	3	${ }^{20}$	${ }^{\text {RH }}$	2	200.250 as	incoming	${ }^{\text {ste }}$ G	Heath		
Baxigstore till	${ }^{\text {aU }}$	22.3 Juy 19	$18: 10$	1820		$\begin{array}{\|l\|} \hline 18: 10 \\ 10: 17 \\ \hline \end{array}$	412	${ }^{21}$	${ }^{\text {RH }}$	2	250 as 150－200 as 1					
	au	${ }^{23}$ Juy＿ 19	10.00	13.00	3			22	${ }_{\text {RH }}$			incoming	Ste 6		6	
	aU	${ }^{23}$ Juyy 19	10.00	13.00		10.56		${ }^{23}$	RH	1	150as	$\begin{aligned} & \text { incoming } \\ & \text { incoming } \end{aligned}$	${ }_{\text {Stie } 6}^{\text {S }}$	comel	5	
	${ }_{\text {aU }}$	${ }^{23}$ Juy＿19	1000	13.0		${ }^{1128}$	${ }_{4}^{4}$		${ }_{\text {日H }}$	1	200 as		Ste G	losing height into hill（to $<150 \mathrm{~m}$ asl where briefly out of view）then rising strongly on wind to $300-350 \mathrm{~m}$ asl and down	${ }_{6.5}$	wint sho－into Silie a
	${ }_{\text {aU }}$		10.00	1300		11：33		${ }^{24}$	㫙		200－250 asl 170 as	$\begin{aligned} & \text { incoming } \\ & \text { incoming } \end{aligned}$	$\begin{gathered} \text { Ste G } \\ \text { Site G } \end{gathered}$	rising to $250-300 \mathrm{~m}$ asl past VP and on to $>300 \mathrm{~m}$ before angling down rising to 250 m asl past VP then to 300 m after circling	${ }^{3.5}$	with fish－in towards Site G with fish－in towards Site G
	${ }_{\text {aU }}$	${ }^{23}$ Juyy 19	10.00	1300		12：13	5	26	${ }_{\text {RH }}$	1					7.75	
Souts Sy Fea	${ }^{\text {aU }}$	23. aux＿19	17：15	2：00	3.75	17.43	1	${ }^{27}$	${ }^{\text {RH }}$	1	100.150 as	incoming	$\mathrm{SieH}^{\text {Ser }}$	genly doun	1 min	
Souts Sy fea	au	${ }^{23}$ ．uy＿ 19	17：15	$21: 00$		17.45	2	${ }^{28}$	${ }_{\text {RH }}$	1	water		${ }_{\text {Stient }}^{\text {Sient }}$		7 min	
Souts Sy fea	au	$22^{\text {a Jux }} 19$	17：15	$21: 00$		$18: 07$	3	29	${ }^{\text {aH }}$	1	${ }_{5}$				5	
Souts Sy Fea	${ }_{\text {aU }}$	${ }^{23}$ Juy＿ 19	17：15	$21: 00$		1822	4	${ }_{30}$	日H	1	water	outane	Stert		5	
Sout Syy Fea	${ }^{\text {aU }}$	${ }^{23}$ Juy＿19	17：15	21：00		1832	5	31	${ }^{\text {日H }}$	1	water	outane	Stien		6	breedirg bicdout from Sien
Souts Sty fea	au	22^{2} Juy＿ 19	${ }^{17} 175$	$21: 00$		18.47	6	${ }^{32}$	RH	1	250.300 as	incoming	Stie 6	beve，the gasaulal down	1	inwithtish osite 6
Souns Sy Fea	aU	22^{3} Juy＿19	17：15	$21: 00$		$19: 14$	8	${ }^{33}$	सH	1	1502020 as	incomine	Ster	tast downt water fom ride	2	
Souts Sy fea	${ }^{\text {aU }}$	${ }^{23}$ Juyy 19	17：15	$21: 00$		19.44	9	34	${ }^{\text {RH }}$	1	200.250851	incoming	Stie 6	Iever ${ }^{\text {a }}$	2	a non－breeding bird in to Site H with fish to Site G
Sutursty fea	au	${ }^{23}$ Juy＿ 19	${ }^{17175}$	$21: 00$		19.44	10	${ }_{3}$	${ }_{\text {日H }}$	2	150 as	incomins	Stel 1		4	with fish to Site G non－breeding birds；uncertain where from，but in to Site I
Souts Sy Fea	aU	${ }^{23}$ Juy＿19	17：15	$21: 00$		20：11	11	${ }_{36}$	日H	1	250931	incomin	Ste 6		2	
Sutursty fae	${ }_{\text {aU }}$	2 23．uy＿ 19	${ }^{17} 175$	$21: 00$		20.13	12	${ }^{37}$	${ }^{\text {RH }}$	1	250351	ourenes	Ster	Evele ut ut 5 taras mapeed	3	
Suth Sty Fea	${ }_{\text {aU }}$	23．．｜u1 19	$17: 15$	$21: 00$		2022	13	${ }^{38}$	${ }^{\text {RH }}$	1	200.250 as	outaring			3	
Sounsyly Fee	aU	${ }^{23}$ Juy＿19	17：15	2：00		20.40	14	39	${ }^{\text {RH }}$	1	，	outurge	Stert	lisin	${ }^{6}$	Out from Site G Out from Site H
Souns Sy fee	${ }_{\text {aU }}$	${ }^{23}$ Juy＿19	17：15	$21: 00$		20.48	15	40	${ }^{\text {RH }}$	1	$100 \cdot 150$ as	incoming	Stie 6	cimble	2	
Souts Sy Fea	${ }_{\text {aU }}$	23. duy 19	17：15	$21: 00$		20.52	16	41	${ }^{\text {日H }}$	1	25031	incomine	Stie 6	level in Rising past VP with single alarm call then straight down to Site I Site I	1.5	
Souns Sly Fea	${ }_{\text {aU }}$	${ }^{23}$ ．uy＿ 19	17：15	$21: 00$		20.56	17	${ }_{4}$	${ }^{\text {RH }}$	1	200931	incomine	Stif		${ }^{4}$	Went
Upoestyree	${ }^{\text {aU }}$	Amester 19	1750	2105		${ }_{1750}$	1	${ }^{43}$	${ }^{\text {RH }}$	1	water	outgong	Steo		5	
Upoestsyrea	${ }^{\text {au }}$	4amest 19	1750	2105		18：12	2	4	${ }^{\text {RH }}$	2	200931	incomine	Steet	Lp the conturs and quite ow vere \backslash P	3	
Unoerssyrea	${ }^{\text {a }}$	4 Acust 19	1750	20.05		1835	3	${ }^{45}$	RH	1	water	outbong	Stief		4	
Unoerssyrea	${ }^{\text {av }}$	4Anest 19	1750	2.05		1839	4	46	${ }^{\text {RH }}$	2	${ }^{20 m}$	incoming	Steo		4	
Unoerstrea	av	4 Aneser 19	1750	205		18.85	5	${ }^{47}$	${ }^{\text {日H }}$	2	250351	incoming	Steo		${ }^{4}$	
Upeassyrea	${ }_{\text {av }}$	4 August 19	${ }_{1750}$	2.05		19.00	－	48	${ }^{\text {RH }}$	2	water	outome	Stieo	in from north to alight not gaining much height	2	
Unoersyrea	${ }_{\text {av }}$	4 August 19	${ }_{1750}$	2.05		1920	，	49	RH	2	240351	incoming	StieSteeSter	slighty gaining height	1	noisily across and down－out from Site A and in to Site E vocal－down to Site B
Unoersyrea	${ }_{\text {av }}$	4 Anguse 19	${ }_{1750}$	2.05		1926	8	${ }^{50}$	RH	1	200.25085	inoming			1	
Unoersyrea	${ }_{\text {av }}$	4averes 19	${ }_{1750}$	205		1935	，	51	${ }^{\text {RH }}$	2	water	ouvereng	Steo	Sishly gaing haght	1	noisily wayytom Site A
Unoersyrea	av	AAsuser 19	${ }_{1750}$	2105		20.44	10	52	${ }^{\text {RH }}$				Steo		4	
	av	5 Anust 19	19,45	2030		${ }^{19,96}$	1	${ }_{5} 5$	${ }^{\text {RH }}$	2	$\underset{\text { vater }}{\text { 25ast }}$	ounoing Outores		Myorer less leval	2	
Sounhyree	${ }_{\text {av }}$	5 Anegst 19	1945	2330		2021	2	54	${ }^{\text {日 }}$	1		outeoing	Steo	moreor ress seveland into coud		Out from Site G
	au	22^{2}	0630	0330	3	${ }^{0643}$	1	${ }_{5}$	вн	1		outgoing		Staing beoow about 150m asi	${ }^{33 \text { minst }}$	out from unmarked lochan：much looping to W －flight path is very simplified， showing the maximum extent；with 3 other birds for c .10 mins ，then another 3 for a further 10 mins，and finally down on its own to Site H
Bexigestonetill	au	20.0 enst 19	0630	0330		0655	2	56	${ }_{\text {RH }}$	1	20.50	incomine	Stert	livelin	2	
Bexigesomentul	au	20.0 gers 19	0_{630}	0330		0723	3	57	пн	1	${ }_{\text {c．} 280838}$	${ }_{\text {olueng }}$	Ster	rising to． 1 ISom as	4	
Bexingomentul	${ }^{\text {aU }}$	20．asus 19	${ }^{2} 30$	030		0756	5	${ }_{58}$	${ }^{\text {日H }}$	1				Ising overitige and on upwass	4	with fish－in to Site G Off Site H －lost，then picked up again with another，also presumed off Site H － away together and lost against the far slopes as they appeared to be going down to Site
	au	20.40	${ }^{0630}$	0330		09：98	，	59	в ${ }^{\text {¢ }}$	${ }^{1+1}$	water	Outaing	Stie 6	10150．200 as	several	
（eximstone till	av	20．asus 19	0630	S30		0915	8	${ }_{60}$	RH	1		ouvores	Sleet	staped cram	<1	to Site I Off unmarked lochan and more or less directly down to Site H
Bexingsometil	au	$2{ }^{\text {20amest } 19}$	0630	0330		0927	，	${ }^{61}$	${ }_{\text {RH }}$	1			$\mathrm{Stan}_{\text {Stien }}$	rsinginioos	3	Into Sile not caryinga a its
Baxiostorenetil	${ }_{\text {av }}$	20.4 erst 19	10.10	${ }^{13,30}$	3	10：10	10	${ }^{62}$	${ }^{\text {RH }}$	1	water	nomine	Stel	rising to． 175 mas as	7.5	Oitum
Baxingsomentil			10.10	13.10		10.34	11	${ }^{63}$	${ }^{\text {пH }}$	1	water	incoming	Steet	Isingoto 150 －200 assat atimes	17	
Baxksosoremetul	${ }_{\text {av }}$	${ }^{20} 2 \times \mathrm{A}$	${ }^{10,10}$	${ }_{1310}$		${ }^{11,03}$	12	${ }_{64}$	${ }_{\text {пн }}$	2	<5	${ }_{\text {mommg }}^{\text {ougong }}$	Stent	1 isingloc． 150 mas	4	
Bexigesoment		2 Casust t 19	10.10	1330		${ }^{1124}$			RH	1	250931	Ousane	Stiee		25	Probably outrom Sle G
Baxhastonetull		2 Camest 19		13.10		${ }^{1132}$		${ }_{6}$	${ }_{\text {RH }}$	1	${ }^{150}$－200 as	cousong	Slient		4	
Exinestocetull	av	22^{2}	10，00	13，10		${ }^{11: 48}$	15	${ }^{67}$	${ }^{\text {RH }}$	1	water	inoming	${ }_{\text {stele }}$	buw oreringe	1	
Baxhastoretull	av	20asust 19	10,10	13.10		${ }_{1159}$	16	${ }^{68}$	${ }_{\text {RH }}$	1	${ }^{100}$－ 150 ast	incomine	Stient		4	Intosient
Saximasometul	av	20.0 est 19	10,10	1310		12：15	17	${ }^{6}$	${ }^{\text {RH }}$	1	c． 150 mas	inoming	${ }_{\text {stert }}$		4.5	Probaby out tom Sle H
Baxnsesonetull	${ }^{\text {a }}$	20.8 ever 19	10,10	13.10		${ }^{1237}$	18	70	${ }^{\text {RH }}$	1	c． 150 mas as	incomine	Slient		5	wathish－into Stient
Bexiestoreetul	av	20 angest 19	10.10	1330		$12: 44$	19	71	${ }_{\text {RH }}$	1	${ }^{\text {c．20m as }}$	incoming	Stie 6	rsing in	1.5	Wwiths－into Site G
syrea	sw	20.4 usest 19	0650	O950	3	0741	2	72	${ }^{\text {RH }}$	2	100	outore	Stie	level	5 min	can
saree	sw	2 Can	${ }^{0650}$	0950		08：30	3	${ }^{73}$	RH	1	100	incoming	Ste）	Level lened directio och	3 min	
Surfea	sw	220 Ausut 19	0550	0950		09：19	4	74	${ }_{\text {RH }}$	1	75	Outgors	Stie6	level	3 3nin	lost tovewin Bun otort headingest
sayrea	sw	22.80	0550	0950		0934	－	75	${ }^{\text {RH }}$	1	50	incoming	Steo	dopoping	21580	larosed on Stie A Atree itrs now onloch
savea	sw	$22 . A$ ase 19	1025	1325	3		2	76	${ }^{\text {RH }}$	1	75	incoming	Ste 6	（evel	4 min	with ths hintotowars Site 6
sylfee	sw		1025	1335			3	7	${ }_{\text {RH }}$	1	75	inomine	Stee	Hevel	3	in towars Sie d
Baxinstore tull	${ }_{\text {sw }}$	2－ALust 19	0605	0970		0620	1	${ }^{7}$	${ }^{\text {RH }}$	1	0	outgons	Stert	0.150	$9_{\text {min }}$	
Baxiostoremetil	sw	2．AWere 19	${ }_{0} 605$	0970		0635	2	79	${ }^{\text {RH }}$	1	0	Ougore	Ster	0.100	15 min	Took of Site ver
Baximesoretull	sw	2．AMest 19	0605	0970		07：11	3	80	RH	1	100	incomis	StieH	100.0	4 min	（nemen
Baximatocetill	sw	2．AMOSt 19	0605	0910		08：00	4	81	${ }^{\text {RH }}$	1	150	incomine	Stie 6	150	5 min	
Bexinserocetul	sw	2．AMest 19	${ }_{0} 605$	0970		0836	${ }^{6}$	82	${ }^{\text {RH }}$	1	75	incoming	Stie 6	75.50	3 min	
Baxinstoretill	sw	2．ARust 19	0605	0910		08.50	，	${ }^{83}$	${ }^{\text {RH }}$	1	－	inomins	Stel	0.500	4 min	｜lol
Baxinstoreetul	sw	2．ARust 19	0605	0970		0902	，	${ }_{84}$	${ }^{\text {RH }}$	1	100	incoming	Stee	100	6min	Westup unmotore ino Stie Gwina lish
shyree	av	2－Amert 19	0620	035		0628	1	${ }^{85}$	${ }^{\text {RH }}$	1	40	incoming	Stieo	stajig cram	，	Off Site ardi it Stio A
sarfee	${ }_{\text {av }}$	2．ARust 19	0620	0395		06.52	2	${ }^{86}$	${ }^{\text {RH }}$	2	${ }^{\text {c．} 250831}$	Outuong	Steo	move oreses bevel	1	
sarfee	${ }_{\text {av }}$	21．Auser 19	0620	0395		07：02	3	${ }^{87}$	${ }^{\text {RH }}$	1	${ }^{\text {c．}} 10$	owfore	Steo	Ising to 20．50m	3	
Surfea	av	2．AMest 19	0620	0335		0734	5	${ }^{88}$	${ }^{\text {RH }}$	1	${ }^{\text {c．27as }}$	inoming	Stie 6	Ising gatalaly，fene anging down outfo sight	1	with Shs－into Stie a
sayrea	av	2．AMOUE 19	0620	0335		08.17	，	${ }^{89}$	${ }^{\text {RH }}$	2	water	Outboing	Stieo	rising 0 o． 50 m	3	Off Stie A spliting y pas shom，one int Stie Fand one outo east
sarea	av	2．AMust 19	0280	0335		0835	8	${ }^{9}$	${ }^{\text {RH }}$	2	${ }^{\text {c250as }}$	incoming	Stie A		4	
Ssyfea	au	21．tasust 19	0620	0395		${ }^{0847}$		9	RH	$1+1$	200.25081	incoming	Stieo	1 ising up around Sie G	13815	9a in from north appeared to check out Site C then joined by a second bird（9b） and both seemed to look at Site E before one down onto Site A and the other away north to alight on Site J
suree	av	2．Apuest 19	0620	0395		09：13	${ }_{10}$	92	RH	1	$\stackrel{20}{ }$	incoming	Stieo	Ived ten domento water	${ }_{\sim}$	minostea

Annex 2

15	150	
105	15	
150		
15	30	
75	30	60
15	30	

Sky dancing male landing with female at end of flight.
female joined on ground by male no. 1 ; subsequenty taking short flight, below ortor heingt
At risk for first 15 s
At risk for first 15 seconds, then dropping below risk height. Briefly
skydancing
found circling very high; element in wind farm buffer at $>150 \mathrm{~m}$. Male picked up tirst. Joined by female flight line 2) after 40 seconds.
 nting close to ground
Pair detected at $11: 39$; this bird, the female, followed.
Male in pair detected at $11: 39$ seen briefly behind female at time of detection and also later briefly beehind femelee c. 120 seconds into fligh.
Attention focussed on female, so path/flight height of male largely unknown, apparently following hor, but close to the ground after initial detection Espaitanated times shown, inclucling 1 minute allowance at ink
Female spiralling Female spiraling upwards over Bakingstone hill then heading northwards
arosss site towards Sky Fea.site boundaries changed subsequent to
field work, so have reestimated times within site field work, so have reestimated times within site
chasing with HC over willows at first; away level over lower valley where at unting; <5m throughout

Nâle HH very briefly in view over brow of hiil; lost behind hill almost

immediately.

Mobbing buzzard. Landing at end of flight. Lost on ground. male flying down Burn of Ore, purrosestullly, Lstriaigt, at risk, then
dropping into burn, below risk and zigzagging back up. Lost behin circling dropped into burn of Ore, lost to view.
across valley always at around 1100
gained height towards end of flight
landed, not seen to take off; counted as all at risk since very briefly below 15 m
15
hunting
circling lost to view into burn of ore
lost to view in burn
3 fledged juvs lost to view into burn
lost to view not seen to reappear
Male initially at height dropping and interacting with female (poss food
pass) within breeding teritory, before climbing again, and resuming high passs within breeding territory, before climbing again, and resuming high
flight beyond flight butfer. Female first seen in background whist following male on previous slight
line (1) and then interacting with this male. Poss food pass with male then
landing within teritory. landing within territory.
Landing at end of flight.
lost behind vehicle on road.
Circling upwards, lost near edge of buffer.
Lost at edge of flight buffer as its
as it spiralled upwards - still judged to be below summit of Binga Fea when Iost and thus all at risk.
Quickly lost behind slope immediately in front of vp, and did not reappear. Quickly lost benind slope
Just off site, below risk.
Detected just oustide of
Detected just outside of buffer: lost behind slope
Stayed beyond buffer; spiralling upwards to to $10-200 \mathrm{~m}$.
Interacting with 2 Buzzards
Female on hunting flight -
another female. Landing at end of flight.
Female from known territory flying up trom.
hunting female on previous flight line (3). Quickly lost as of ollowing other
soon lower and out of sight; briefly again low to W
stayed below 200 m ; time at 150 -200m extended for 30 sess to allow for
stayed below 200m; time at $150-200 \mathrm{~m}$ extended for 30 secs to allow for
time a t risk before detection
Hent Hunting near burn; lost behind slope, did not reappear, possibly landed. Suspect juvenile

590 Male time AR

[^0]

 $\underset{\substack{\text { Original flight Fight } \\ \text { no. } \\ \text { No. } \\ \text { No. }}}{ }$

 mmen
brown bird hunting bird
took off from ground lost look off from ground lost over shoulder of hill
ost heading down towards burn did not reapper lost heading dow
hunting ind
hunting iuv bird hunting bird
hunting juv bird
Male huting

hunting male lost oversky line sitit toch brown bird lost tove view Ne ititle Wee
 lunting male lost over sky ine kit Loch brown bird lost to view Ne e e ittle Wee e

slope of ilitle wee fea to o buidtings at ve then across t he r r
low fight lost
ad male flying above brown bird which on size loked like a 1 styr male filew
east of dom hution the

 2 birds together circling then headed west lost to view over skyline fem folowwing male both together
bird hunting up burn of ore
low lost to view ito de
ow lost tov view into dead ground
from wee slope across burn of ore lost into dead ground
rom wee slope a cross burn of or lost into dead ground
funting male eanined height over slope of itite wee fea all
ad male filight line 1 flushed this bird off fround out of a patch of iuncus flew
short distance and landed

lost ov view heading towards Upper Seatter
right yellow eve could be sen . bst ov view over wee fea skyine heading wes
lost to view over wee faa sky
hunting, alway below 10 m
gained heiehh as approaching summit of Binga
before leavin site
stead level flight lost over col west of kit toch
before leaving site
steady level fight lost over col west of k kit loc
tanded
anded on tence post, didn't see take off but was gone by $15: 00$, last seen on post tat 14:50
anded on fence post
anded on tence post
anded on fence post
anded on ence post
$\begin{array}{llll}\text { sinded on fence post, now } 2 \text { brown birds and one ad male on fence posts } & 0 & \text { Hen harrier rost with one } \\ \text { same bird as flight line } 2 \text {, took off from fence post into roost at 15:5 } & 0 & \text {. }\end{array}$
I_{5} ressumed same birds as filiht lines $3 \& 4$ as no birds on post, both into roost at L.5:55
huting bird
dways high be

Iway sigh between 20-100m
lost oview heading North behind communications building
landed on fence post, ass seen on fence postat t11:18
lit
lost ov view over skyl line, , way have been bird fro
was gone after Ichecked after Iosing this bird.
anded on fence post
bosto view in burn he
Iost to view in burn heading west
onded on ground bidd from fence post filght line 2 not there, possilly same bird

Sunting fight, lost Sw over slope of Binga Fea
hunting bird
lunting bird
both
Lirst together male above female e but both below $15 m$, bit of interactio
both handed
picked up in filight landed. female from flight 1 still on sround
picked up in filigh landed. female from filight 1 still on ground
bird p picked up in filight different bird to female filight one as she is still on
ground
hunting
b
unting bird presumed bir
lunting bird lost to view in dead ground heard east
lost ito dead ground not seen to roappear
ost over skyline
liticter unk hig
pilways high
ald
always h igh
over shyinine level figh
over shywe hunting
over skyline level flight
over skyine hunting

vP	$\begin{gathered} \text { Observ } \\ \text { er } \end{gathered}$	Date	Session	$\begin{gathered} \text { Origin } \\ \text { Olight } \\ \text { Fo. } \\ \text { no. } \end{gathered}$	$\begin{aligned} & \text { Flight Ref } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Specie } \\ & \mathrm{s} \end{aligned}$	$\underset{ }{\text { No. }}$ birds	$\begin{aligned} & \text { Age/ } \\ & \text { sex } \end{aligned}$	Height at detection	Time detected	Total duration in fight (mins)	$\begin{gathered} \text { Flight } \\ \text { duration } \\ \text { in buffer } \end{gathered}$	$\begin{aligned} & <15 \mathrm{~m} \text { in } \\ & \text { buffer } \end{aligned}$	15 . 50 m in buffer	50 100 m in buffer	100 150 m in buffer	150 buffer buffer	$\begin{aligned} & >200 \mathrm{~m} \\ & \text { in buffer } \end{aligned}$	Comment	Check	Flight length at risk in flight buffer area (m)	Flight length at risk in 6turbine wind farm area		Apparent filight spped speed	Flight time in $6 T$ buffer	Monthly time in $6 T$ buffer
vP3	suw	05-Sep-19	early	1	120	нн	1	f	5	07:46	1	1	60						lost over skyline	0	0	0		0.00	0	
vP1	s.w	20-Sep-19	a.m.	1	121	нн	1	adm	50	10:02	6.75	6.25	120	255					picked up at 40 m circling down to $<15 \mathrm{~m}$ along slope	0	4,535	178		17.78	10	
vP1	suw	20-Sep-19	a.m.	2	122	HH	1	juv	5	10:20	0.75	0.75	45							0	0	0		0.00	0	
vP3	sJw	20-Sep-19	p.m.	2	123	HH	1	f	5	15:26	2.25	2.25	135							0	0	0		0.00	0	10
vP3	SJW	08-Oct-19	a.m.	13	124	HH	1	f	50	09:24	9.5	9.5		175	395				Sparring in air then both continued North hanging in wind with female dropping down and mobbing the 1 st yr male; both birds then mobbing one another. Highest flight was female at up to 75 m	0	1,819	1004		3.19	315	
vP3	suw	08-Oct-19	a.m.	$1{ }^{\text {b }}$	125	HH	1	1styr m	50	09:24	9.5	9.5		175	395				size difference indicated 1 sty y male.	0	1,819	1004		3.19	315	
vP3	s.w	08-Oct-19	a.m.	2	126	нн	1	t	10	10:08	4.25	4.25	255						hunting up burn and over reclaim lost over skyine	0	0	0		0.00	0	
vP3	suw	08-Oct-19	a.m.	3	127	нн	1	adm	5	10:56	1	1	60							0	0	0		0.00	0	
vP1	s.w	08-Oct-19	p.m.	1	128	нн	1	t	5	14:25	3	3	180							0	0	0		0.00	0	
vP1	suw	08-Oct-19	p.m.	3	129	нн	1	adm	10	15:37	3.25	3.25	195						landed near willow bushes out of sight, not seen to reappear	0	0	0		0.00	0	
vP1	suw	08-Oct-19	p.m.	4	130	нн	1	rt	10	15:43	0.5	0.5	30						lost in dead ground at Kit Loch Col	0	0	0		0.00	0	
vP3	suw	24-Oct-19	p.m.	1	131	нн	1	adm	5	16:41	0.75	0.75	45						lost into dead ground at slope at burn	0	0	0		0.00	0	629
vP1	suw	01-Nov-19	a.m.	1	132	нн	1	t	3	10:32	2.25	2.25	135						down into burn lost to view	0	0	0		0.00	0	
vP3	suw	01-Nov-19	p.m.	1	133	нH	1	rt	5	15:31	3	3	180						over Binga fea out of sight	0	0	0		0.00	0	
vP3	s.w	01-Nov-19	p.m.	2	134	HH	1	adm	2	15:35	1.5	1.5	90						landed on fence post	0	0	0		0.00	0	
vP3	s.w	01-Nov-19	p.m.	${ }^{3}$	135	нH	1	adm	3	15:41	0.75	0.75	45						presumed bird no. 2 moving on across burn at $10-15 \mathrm{~m}$, then lower to ground and alighting on fence post; sat there until the end of the watch, apart from a brief spin round when a	0	0	0		0.00	0	
vP3	AU	29-Nov-19	p.m.	1	136	нн	1	rt	10-15	13:47	2	${ }^{2}$	120						Raven landed nearby. Continued to watch it after the watch and it finally flew off at $15: 51$ (after 2 hours and 2 minutes) but was lost low against the ground almost immediately in the dusk.	0	0	0		0.00	0	
vP1	suw	29-Nov-19	p.m.	2	137	нн	1	rt	2	13:07	2.75	2.75	165							0	0	0		0.00	0	
vP1	SJw	29-Nov-19	p.m.	3a	138	HH	1	rt	20	13:30	1.25	1.25		75					the other; both continued like this with the higher bird gaining height to about 30 m and the lower bird was always below 15 m , roughly $5-10 \mathrm{~m}$. This entry is for the upper bird, which was in view longer.	0	889	0		11.85	0	
vp1	suw	29-Nov-19	p.m.	з	139	нн	1	r	5	13:30	1	1	60						This entry is for the lower bird along fight path no. 3 (see 3a above)	0	0	0		0.00	0	0
VP1	SJw	03-Dec-19	a.m.	1	140	HH	1	rt	5	11:28	2.25	2.25	135						above reclaim on Wee Fea, then over skyline landed on fence post had a crap and a preen, didn't see where it rose from	0	0	0		0.00	0	
vP3	SJw	04-Dec-19	a.m.	1	141	нн	1	r	2	08:26	0.5	0.25	15						but by behaviour suggested it had just come out of roost nearby. Still on fence post at 08:35, gone at 08:40	0	0	0		0.00	0	
vP1	sJw	19-Dec-19	p.m.	${ }^{2}$	142	HH	1	rt	2	${ }^{13: 50}$	6.25	6.25	375						hunting	0	0	0		0.00	0	
VP3	suw	20-Dec-19	p.m.	1	143	HH	1	rt	50	12:53	2.5	2.5			150				high west of Longigill, kept high until out of sight round Binga Fea	0	911	459		6.07	76	
vP3	s.w	20-Dec-19	p.m.	2	144	HH	1	${ }^{\text {r }}$	25	14:19	3.25	3.25	135	60					landed on post, last seen on post 14:40, gone at 14:43	0	1,155	361		19.25	19	94
VP3	S.w	09-Jan-20	a.m.	1	145	${ }_{\text {HH }}$	1	+	10 5	09:27	3.25 7	$\begin{array}{r}0 \\ 7 \\ \hline\end{array}$							gained heieght when beyond fence to about $20-25 \mathrm{~m}$	0	0	0		0.00	0	
VP3	SJW	09-Jan-20	${ }^{\text {a.m. }}$	${ }^{2}$	146	${ }_{\text {HH }}$	1	${ }^{\text {r }}$	5	10:01	7.25	7.25	435						nunting bird ${ }^{\text {a }}$ anded brifly on groundor 7 sec	0	0	0		0.00	0	
VP1	SJW	${ }_{\text {29-Jan-20 }}^{\text {09-Ja }}$	${ }_{\text {p.m.m. }}^{\text {p.m. }}$	1	$\begin{aligned} & 147 \\ & 148 \end{aligned}$	HH	1 2	$\xrightarrow{\text { r }}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 15: 43 \\ & 08: 15 \end{aligned}$	$\begin{gathered} 6.75 \\ 0.7 \end{gathered}$	6 0.75	$\begin{gathered} 360 \\ 45 \end{gathered}$						landed briefly ong ground for 7 sec	0	0	0		0.00 0.00	0	
vP3	suw	22-Jan-20	p.m.	1	149	HH	1	t	3	14:56	5.5	5.5	330						chased a pipit unsuccesstully then away to W over Binga Fea skyline; in	0	0	0		0.00	0	
vP3	SJw	22-Jan-20	p.m.	2	150	нH	1	rt	5	15:03	0.75	0.75	45						probably a different bird from no. 1 due to short time between them; away to N over Wee Fea skyline	0	0	0		0.00	0	0
vP3	s.w	13-Feb-20	a.m.	1	151	нн	1	r	1	08:05	2	2	120						one bird off fence post off east lost into dead ground; 2nd bird not seen going - some time after 08:20	0	0	0		0.00	0	
vP3	Suw	13-Feb-20	a.m.	2	152	нн	1	r	1	09:31	0.5	0.5	30						landed on fence post	0	0	0		0.00	0	
vP3	Suw	13-Feb-20	a.m.	3	153	HH	1	f	5	09:40	0.25	0.25	15						landed on fence post; different from no. 2 , which was still there	0	0	0		0.00	0	
vP3	suw	13-Feb-20	a.m.	4	154	HH	1	rt	2	09:43	0.25	0.25	15						presumed no. 2 ; landed on another fence post	0	0	0		0.00	0	
VP3	SJw	${ }^{13-F e b-20}$	a.m.	5	${ }^{155}$	HH	1	${ }^{\text {r }}$	${ }^{15}$	09:45	3.25	3.25	195						over skyline landed onfence post, three birds now on fence posts	0	0	0		0.00	0	
VP3 vP3	S.w	13-Feb-20 13 -Feb-20	a.m.	${ }_{7}^{6}$	156 157	H ${ }_{\text {H }}$	1	+	5 5	09:48 09.59	3.25 2.25	3.25 2.25	195 135						probably no. 3 - moving off east and lost into dead ground	0	0	0		0.00 0.00	0	
VP3	suw	13-Feb-20	a.m.	8	158	HH	1	rt	1	10:05	2.25 3.75	2.25 3.75	135 225							0	0	0		0.00	0	
VP3	suw	13-Feb-20	a.m.	9	159	HH	1	t	1	10:43	4	4	240						${ }_{\text {lo }}^{\text {to }}$ hunting bird	0	0	0		0.00	0	
vP1	s.w	19-Feb-20	a.m.	1	160	нн	1	f	5	08:40	5.25	5.25	315						hunting bird	0	0	0		0.00	0	
vP1	suw	19-Feb-20	a.m.	2	161	нн	2	t	2	10:02	1	1	60							0	0	0		0.00	0	0
vP1	AU	04-Mar-20	a.m.	5	162	HH	1	rt	10-15	10:51	4.5	4	240						stayed at <15m; slow hanging on wind	0	0	0		0.00	0	
vP3	suw	04-Mar-20	a.m.	1	163	HH	1	rt	<5	09:35	7.25	7.25	435							0	0	0		0.00	0	
vP3	suw	20-Mar-20	a.m.	1	164	нн	1	adm	50	09:51	7.5	7.5		345	105				Circling burn of ore gained height to about 75 m then dropped to 30 m when heading Nw over Longigill	0	2447	789		5.44	145	
vP3	sJw	20-Mar-20	a.m.	2	165	нн	1	f	40	11:49	5	2.5	45	105					f circling, joined by ad male no. 3 with a bit of interaction; f landed on fence post	0	1,352	0		12.88	0	
vP3	suw	20-Mar-20	a.m.	3	166	H	1	adm	40	11:49	8.25	2.5		105	45				Interacting with f no. 2 and circling above her when she landed; m then gained height away over towards Binga Fea	0	1,434	0		9.56	0	
vP3	SJw	20-Mar-20	a.m.	4	167	HH	1	f	75	11:58	5.25	5.25			315				circling high drifted off West	0	2251	1222		7.15	171	
vP1	s.w	20-Mar-20	p.m.	1	168	HH	1	f	100	$13: 51$	7.25	7.25		30	405				circling high, dropped height to $40-50 \mathrm{~m}$ over Kit loch/wee fea sky line	0	3,683	0		8.47	0	
vP1	suw	20-Mar-20	p.m.	2	169	нн	2	ad m+f	75	14:08	5.75	5.75		135	210				ad $\mathrm{m} \& \mathrm{f}$ circling about $75-100 \mathrm{~m}$; dropped height, then lost to view into burn	0	3,500	0	2 birds	10.14	0	316
														1460	2020	0				0	25795	5017		115.00	1050	
																								9.58	average fily	

Annex 3

VP	Observer	Date	Session	5-min ended	Sp.	Zone A	Zone B
VP1	NH	18-Apr-18	early	08:05	busy	0	0
VP1	NH	28/04/2018	am	10:05	NX	1	0
VP1	NH	28/04/2018	am	10:20	NX	2	0
VP1	NH	28/04/2018	am	10:30	NX	1	0
VP1	NH	28/04/2018	am	10:35	NX	0	4
VP1	NH	28/04/2018	am	10:40	NX	1	0
VP1	NH	28/04/2018	am	11:10	NX	2	0
VP1	NH	28/04/2018	am	11:15	NX	1	1
VP1	NH	28/04/2018	am	12:25	NX	3	0
VP1	NH	28/04/2018	am	12:30	NX	1	0
						12	5
			Number 'busy':			1	1
VP1	AU	01-May	early	06:25	NX	1	
VP1	AU	01-May	early	06:40	NX	1	
VP1	AU	01-May	early	08:35	NX	2	
VP1	AU	01-May	early	06:10	busy		
VP1	AU	01-May	early	06:50	busy		
VP1	AU	01-May	early	06:55	busy		
VP1	AU	01-May	early	07:00	busy		
VP1	AU	01-May	early	07:05	busy		
VP1	AU	01-May	early	07:10	busy		
VP1	AU	01-May	early	07:15	busy		
VP1	AU	01-May	early	07:20	busy		
VP1	AU	01-May	early	07:25	busy		
VP1	AU	01-May	early	07:30	busy		
VP1	AU	01-May	early	07:45	busy		
VP1	AU	01-May	early	07:50	busy		
VP1	AU	01-May	early	08:05	busy		
VP1	AU	01-May	early	08:10	busy		
VP1	AU	01-May	early	08:15	busy		
VP1	AU	01-May	early	08:20	busy		
VP1	AU	01-May	early	08:25	busy		
VP1	AU	01-May	early	08:55	busy		
VP1	NH	17/05/2018	am	10:55	NX	1	0
VP1	NH	17/05/2018	am	11:00	NX	1	0
VP1	NH	17/05/2018	am	11:05	NX	1	0
VP1	NH	17/05/2018	am	11:10	NX	2	0
VP1	NH	17/05/2018	am	11:20	NX	0	1
VP1	NH	17/05/2018	am	11:25	NX	1	2
VP1	NH	17/05/2018	am	11:30	NX	0	1
VP1	NH	17/05/2018	am	11:40	NX	0	2
VP1	NH	17/05/2018	am	11:45	NX	1	0
VP1	NH	17/05/2018	am	11:55	NX	1	2
VP1	NH	17/05/2018	am	12:00	NX	1	0
VP1	NH	17/05/2018	am	12:10	NX	2	1
VP1	NH	17/05/2018	am	12:15	NX	2	0
VP1	NH	17/05/2018	am	12:20	NX	2	0
VP1	NH	17/05/2018	am	12:25	NX	1	0
VP1	NH	17/05/2018	am	12:35	NX	2	0
VP1	NH	17/05/2018	am	12:40	NX	1	1
VP1	NH	17/05/2018	am	12:45	NX	1	3
VP1	NH	17/05/2018	am	12:55	NX	1	0
VP1	NH	17/05/2018	am	13:00	NX	0	1
VP1	NH	17/05/2018	am	13:05	NX	0	2
VP1	NH	17/05/2018	am	13:20	NX	0	1
VP1	NH	17/05/2018	am	12:30	too busy		
						25	17
			Number 'busy':			19	19
VP1	NH	07-Jun-18	early	06:20	NX	3	3
VP1	NH	07-Jun-18	early	06:40	NX	2	2
VP1	NH	07-Jun-18	early	06:55	NX	1	0
VP1	NH	07-Jun-18	early	07:05	NX	1	0
VP1	NH	07-Jun-18	early	07:20	NX	1	0
VP1	NH	07-Jun-18	early	07:35	NX	3	0
VP1	NH	07-Jun-18	early	07:40	NX	2	2
VP1	NH	07-Jun-18	early	07:50	NX	2	0
VP1	NH	07-Jun-18	early	07:55	NX	5	0
VP1	NH	07-Jun-18	early	08:00	NX	1	0
VP1	NH	07-Jun-18	early	08:05	NX	4	2
VP1	NH	07-Jun-18	early	08:10	NX	0	4
VP1	NH	07-Jun-18	early	08:15	NX	2	0
VP1	NH	07-Jun-18	early	08:20	NX	4	3
VP1	NH	07-Jun-18	early	08:25	NX	5	1
VP1	NH	07-Jun-18	early	08:30	NX	2	1
VP1	NH	07-Jun-18	early	08:35	NX	2	0
VP1	NH	07-Jun-18	early	08:40	NX	0	1
VP1	NH	07-Jun-18	early	08:45	NX	2	0
VP1	NH	07-Jun-18	early	08:55	NX	2	1
VP1	NH	07-Jun-18	early	09:00	NX	2	0
VP1	NH	07-Jun-18	early	09:05	NX	1	0
VP1	NH	07-Jun-18	early	06:15	busy		
VP1	NH	07-Jun-18	early	06:25	busy		
VP1	NH	07-Jun-18	early	06:30	busy		
VP1	NH	07-Jun-18	early	06:35	busy		
VP1	NH	07-Jun-18	early	07:10	busy		
VP1	NH	07-Jun-18	early	07:15	busy		
VP1	NH	24-Jun-18	pm	14:45	NX	2	1
VP1	NH	24-Jun-18	pm	14:50	NX	1	1
VP1	NH	24-Jun-18	pm	14:55	NX	1	2
VP1	NH	24-Jun-18	pm	15:00	NX	3	0
VP1	NH	24-Jun-18	pm	15:05	NX	4	2
VP1	NH	24-Jun-18	pm	15:10	NX	6	6

No. 5-mins	Net snaps	Birds per snapshot-20-150m		
			Zone A	Zone B
72			12	5
	71		0.17	0.07
		Birds/sqkm	0.085	0.036
		Zone area	1.98	1.97

No. 5-mins	Net snaps	Birds per snapshot - 20-150m		
			Zone A	Zone B
	53		25	17
72			0.47	0.32
		Birds/sqkm	0.238	0.163
		Zone area	1.98	1.97

No. 5-mins	Net snaps	Birds per snapshot-20-150m		
			Zone A	Zone B
72	65		98	94
			1.51	1.45
		Birds/sqkm	0.761	0.734
		Zone area	1.98	1.97

No. 5-mins	Net snaps	Birds per snapshot - 20-150m		
			Zone A	Zone B
	105		119	82
108			1.13	0.78
		Birds/sqkm	0.572	0.396
		Zone area	1.98	1.97

No. 5-mins	Net snaps	Birds per snapshot - 20-150m		
			Zone A	Zone B
			10	29
72	70		0.14	0.41
		Birds/sqkm	0.072	0.210
		Zone area	1.98	1.97

VP	Observer	Date	Session	$\begin{aligned} & \text { 5-min } \\ & \text { ended } \end{aligned}$	Sp.	Zone A	Zone B
VP3	SJW	18-Apr	pm	14:35	NX	1	6
VP3	SJw	18-Apr	pm	14:40	NX	2	2
VP3	sJw	18-Apr	pm	14:45	NX	1	2
VP3	sJw	18-Apr	pm	14:50	NX	3	6
VP3	sJw	18-Apr	pm	15:00	NX	4	4
VP3	sJw	18-Apr	pm	15:15	NX	1	1
VP3	SJw	18-Apr	pm	15:40	NX	1	
VP3	SJw	18-Apr	pm	15:50	NX	1	1
VP3	SJw	18-Apr	pm	16:00	NX	1	
VP3	SJw	18-Apr	pm	16:20	NX	2	2
VP3	sJw	18-Apr	pm	16:35	NX	1	
VP3	sJw	18-Apr	pm	17:10	NX	1	1
VP3	sJw	18-Apr	pm	17:15	NX		2
VP3	SJW	${ }^{18}$-Apr	pm	17:25	NX	2	2
VP3	sJw	18-Apr	pm		NX	2	2
VP3	SJW	18 -Apr	pm	15:25	busy		
VP3	SJw	18-Apr	pm	15:45	busy		
VP3	SJw	18-Apr	pm	16:05	busy		
VP3	SJw	18-Apr	pm	16:10	busy		
VP3	NH	25-Apr-18	am	10:25	NX	0	2
VP3	NH	25-Apr-18	am	10:30	NX	3	0
VP3	NH	25-Apr-18	am	10:55	NX	13	0
VP3	NH	25-Apr-18	am	11:15	NX	1	0
VP3	NH	25-Apr-18	am	11:35	NX	1	1
VP3	NH	25-Apr-18	am	11:40	NX	0	2
VP3	NH	25-Apr-18	am	11:45	NX	1	0
VP3	NH	25-Apr-18	am	11:55	NX	1	0
VP3	NH	25-Apr-18	am	12:10	NX	0	1
VP3	NH	25-Apr-18	am	12:15	NX	0	1
VP3	NH	25-Apr-18	am	10:35	busy		
VP3	NH	25-Apr-18	am	10:40	busy		
vP3	NH	25-Apr-18	am	11:50	busy	43	40
			Number 'busy':			7	7
VP3	sJw	10-May	late	18:30	NX		
VP3	SJw	10-May	late	18:40	NX		1
VP3	sJw	10-May	late	18:45	NX		
VP3	sJw	10-May	late	18:50	NX	1	
VP3	SJW	${ }^{10-M a y}$	late	18:55	NX		1
VP3	SJW	10-May	late	19:05	NX		
VP3	SJW	10-May	late	19:15	NX	1	2
VP3	SJW	10-May	late	19:25	NX	2	2
VP3	SJw	10-May	late	19:35	NX		
VP3	SJw	10-May	late	19:40	NX	1	
VP3	SJw	10-May	late	19:50	NX		
VP3	SJw	10-May	late	20:00	NX	1	
VP3	sJw	10-May	late	20:05	NX		
VP3	sJw	10-May	late	20:20	NX		
VP3	sJw	10-May	late	20:30	NX	1	
VP3	SJW	10-May	late	20:40	NX		
VP3	SJW	10-May	late	20:50	NX		
VP3	SJW	10-May	late	20:55	NX		
VP3	SJW	10-May	late	21:00	NX		
VP3	SJw	10-May	late	21:15	NX		
VP3	SJw	10-May	late		NX		
VP3	sJw	19-May	early	05:35	NX		1
VP3	SJW	${ }^{\text {19-May }}$	early	05:40	NX		
VP3	SJw	19-May	early	05:45	NX		
VP3	SJW	19-May	early	05:50	NX	1	1
VP3	SJW	19-May	early	05:55	NX	1	2
VP3	SJW	19-May	early	06:05	NX		1
VP3	SJW	19-May	early	06:10	NX		
VP3	SJw	19-May	early	06:15	NX	1	
VP3	SJw	19-May	early	06:35	NX	1	
VP3	SJw	19-May	early	06:45	NX	1	1
VP3	sJw	19-May	early	06:55	NX	1	1
VP3	SJW	19-May	early	07:00	NX		3
VP3	SJW	${ }^{19-M a y}$	early	07:10	NX		1
VP3	SJW	19-May	early	07:15	NX	2	
VP3	SJW	19-May	early	07:20	NX		
VP3	SJW	19-May	early	07:25	NX		
VP3	SJw	19-May	early	07:30	NX		
VP3	SJw	19-May	early	05:25	busy		
vP3	SJw	19-May	early	05:30	busy		
						15	17
			Number 'busy':				2
VP3	sJw	04-Jun	late	19:30	NX	1	2
VP3	SJw	04-Jun	late	19:45	NX	3	1
VP3	SJW	04-Jun	late	19:50	NX	2	1
VP3	SJw	04-Jun	late	20:05	NX		
VP3	SJw	04-Jun	late	20:35	NX	2	
VP3	SJw	04-Jun	late		NX	1	1
VP3	SJW	04-Jun	late	19:55	busy		
VP3	SJW	04 -Jun	late	20:00	busy		
VP3	SJw	04-Jun	late	20:20	busy		
VP3	NH	$24 . J u n-18$	am	10:10	NX	1	0
VP3	NH	24 -Jun-18	am	10:15	NX	1	0
VP3	NH	24-Jun-18	am	10:30	NX	1	0
VP3	NH	$24-\mathrm{Jun}-18$	am	10:40	NX	1	0
VP3	NH	24-Jun-18	am	10:50	NX	1	0
VP3	NH	24-Jun-18	am	10:55	NX		0
VP3	NH	$24-\mathrm{Jun}-18$	am	11:00	NX	1	0
VP3	NH	$24-\mathrm{Jun}$-18	am	11:10	NX	1	0
VP3	NH	24-Jun-18	am	11:15	NX		0
VP3	NH	24 -Jun-18	am	11:20	NX		0
VP3	NH	24 -Jun-18	am	11:50	NX	2	0
VP3	NH	24-Jun-18	am	12:05	NX	0	1
VP3	NH	$24-\mathrm{Jun}$-18	am	12:15	NX	1	0
VP3	NH	24-Jun-18	am	12:25	NX	1	0
VP3	NH	24-Jun-18	am	12:30	NX	2	0
VP3	NH	24-Jun-18	am	12:35	NX	3	,
VP3	NH	24-Jun-18	am	12:40	NX	0	
VP3	NH	24-Jun-18	am	12:45	NX	1	0
VP3	NH	$24-J u n-18$	am	12:50	NX	2	0
VP3	NH	24-Jun-18	am	10:25	busy		
VP3	NH	24-Jun-18	am	12:20	busy	36	7

Number 'busy':			5	5
early	04:15	NX	3	
early	04:25	NX	2	
early	04:30	NX	1	1
early	04:35	NX	2	1
early	04:45	NX		2
early	04:55	NX	2	
early	05:00	NX	3	1
early	05:10	NX	2	
early	05:15	NX	1	1
early	05:25	NX	4	2
early	05:30	NX		1
early	05:35	NX	1	
early	05:45	NX	1	
early	05:55	NX	2	
early	06:05	NX	3	1
early	06:10	NX	1	2
early	06:25	NX	4	1
early	06:45	NX		1
early	07:00	NX	1	3
early	07:05	NX	2	
early	07:10	NX	2	
early	04:40	busy		
early	06:00	busy		
am	10:30	NX	4	3
am	10:35	NX	1	0
am	10:40	NX	2	0
am	10:55	NX	1	0
am	11:00	NX	2	1
am	11:05	NX	3	1
am	11:20	NX	1	0
am	11:25	NX	1	2
am	11:30	NX	2	1
am	11:45	NX	1	0
am	11:50	NX	0	1
am	11:55	NX	2	0
am	12:00	NX	2	0
am	12:05	NX	5	2
am	12:15	NX	2	1
am	12:20	NX	1	0
am	12:25	NX	3	0
am	12:35	NX	1	1
am	12:40	NX	2	0
am	12:45	NX	4	0
am	12:50	NX	1	1
am	12:55	NX	3	0
am	13:00	NX	2	1
am	13:05	NX	2	0
am	13:10	NX	0	2
am	13:15	NX	1	0
am	10:45	busy		
am	10:50	busy		
am	11:10	busy		
am	11:15	busy		
am	11:35	busy		
am	11:40	busy		
am	12:10	busy		
am	12:30	busy		
pm	14:10	NX	2	0
pm	14:30	NX	1	3
pm	$14: 50$	NX	6	0
pm	14:55	NX	2	1
pm	15:00	NX	3	1
pm	15:05	NX	0	1
pm	15:10	NX	4	0
pm	15:30	NX	5	0
pm	15:35	NX	1	0
pm	15:40	NX	2	0
pm	15:50	NX	3	1
pm	15:55	NX	6	0
pm	16:00	NX	1	1
pm	16:05	NX	1	2
pm	16:10	NX	1	0
pm	16:15	NX	1	0
pm	16:20	NX	1	0
pm	16:25	NX	2	0
pm	16:30	NX	1	3
pm	16:50	NX	0	2
pm	16:55	NX	0	1
pm	14:20	busy		
pm	14:25	busy		
pm	14:45	busy		
pm	15:45	busy		
pm	17:00	busy		
pm	17:05	busy		
			129	51
Number 'busy':			16	16
early	05:50	NX	2	1
early	05:55	NX	1	0
early	06:00	NX	1	1
early	06:05	NX	2	1
early	06:10	NX	2	1
early	06:15	NX	1	0
early	06:20	NX	1	1
early	06:25	NX	4	1
early	06:30	NX	3	1
early	06:35	NX	10	1
early	06:40	NX	5	1
early	06:45	NX	3	4
early	$\begin{aligned} & \text { 06:50 } \\ & 07: 00 \end{aligned}$	NX $N X$	4	0

	0.54	0.10
Birds/sqkm	0.302	0.048
Zone area	1.78	2.19

Great Skua - Bird Occupancy Calculations

VP1-Zone A								From 'snapshots \& density VP1'	
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT		
Bird density	birds/km ${ }^{2}$	0.085	0.238	0.761	0.407	0.572	0.072 From 'snapshots \& density VP1'		
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14		
At-risk flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km}^{2}$	1.195	3.335	10.660	5.700	8.013	1.010		
Zone area	km^{2}	1.9800	1.9800	1.9800	1.9800	1.9800	1.9800		
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	2.366	6.604	21.108	11.286	15.867	2.000		
Hours available	hrs	432	522	549	547	480	387		
Monthly flight length at risk	m	3679910	12409811	41717243	22223829	27417600	2786400		
Rotor volume (1 turbine)	m^{3}	80779	80779	80779	80779	80779	80779		
Zone risk volume	m^{3}	267300000	267300000	267300000	267300000	267300000	267300000		
Flight length through rotors	m	1112	3750	12607	6716	8286	842		
No. passes through rotors		200	675	2267	1208	1490	151		
No. passes at 85\% operational efficiency		170	573	1927	1027	1267	129		
No. striking rotors at Band Model 6.6\%		11.22	37.84	127.20	67.77	83.60	8.50		
No. striking rotors at 99.5\% avoidance		0.056	0.189	0.636	0.339	0.418	0.042	1.681	1.781 (x 1.06 to
VP1-Zone B									
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT		
Bird density	birds/km ${ }^{2}$	0.036	0.163	0.734	0.264	0.396	0.210 From 'snapshots \& density VP1'		
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14		
At-risk flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km}^{2}$	0.500	2.279	10.277	3.698	5.550	2.944		
Zone area	km^{2}	1.97	1.97	1.97	1.97	1.97	1.97		
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	0.986	4.491	20.246	7.286	10.933	5.800		
Hours available	hrs	432	522	549	547	480	387		
Monthly flight length at risk	m	1533296	8438672	40014498	14347029	18892800	8080560		
Rotor volume (1 turbine)	m^{3}	80779	80779	80779	80779	80779	80779		
Zone risk volume	m^{3}	265950000	265950000	265950000	265950000	265950000	265950000		
Flight length through rotors	m	466	2563	12154	4358	5738	2454441		
No. passes through rotors		84	461	2186	784	1032			
No. passes at 85\% operational efficiency		71	392	1858	666	877	375		
No. striking rotors at Band Model 6.6\%		4.70	25.86	122.63	43.97	57.90	24.76		
No. striking rotors at 99.5\% avoidance		0.023	0.129	0.613	0.220	0.290	0.124	1.399	1.483 (x 1.06 to
VP3-Zone B									
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT		
Bird density	birds/km ${ }^{2}$	0.281	0.111	0.048	0.253	0.341	0.026 From 'snapshots \& density VP3'		
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14		
At-risk flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km}^{2}$	3.934	1.553	0.668	3.544	4.779	0.371		
Zone area	km^{2}	2.19	2.19	2.19	2.19	2.19	2.19		
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	8.615	3.400	1.463	7.761	10.466	0.812		
Hours available	hrs	432	522	549	547	480	387		
Monthly flight length at risk	m	13398646	6389280	2890854	15282704	18085282	1130713		
Rotor volume (1 turbine)	m^{3}	80779	80779	80779	80779	80779	80779		
Zone risk volume	m^{3}	295650000	295650000	295650000	295650000	295650000	295650000		
Flight length through rotors	m	3661	1746	790	4176	4941	309		
No. passes through rotors		658	314	142	751	889	56		
No. passes at 85\% operational efficiency		560	267	121	638	755	47		
No. striking rotors at Band Model 6.6\%		36.94	17.61	7.97	42.13	49.86	3.12		0.835 (x 1.06 to allow for the extra 5 m at $15-20 \mathrm{~m}$)
No. striking rotors at 99.5\% avoidance		0.185	0.088	0.040	0.211	0.249	0.016	0.788	

VP3-Zone A - not included in the collision risk workings

Bird density

Flight speed
At-risk flight rate
Zone area
Flight rate in zone
Hours available
Monthly flight length at risk
Rotor volume (1 turbine)
Zone risk volume
Flight length through rotors
No. passes through rotors
No. passes at 85% operational efficiency
No. striking rotors at Band Model 7.4\%
No. striking rotors at 99.5% avoidance
$\mathrm{birds} / \mathrm{km}^{2}$
$\mathrm{~m} / \mathrm{sec}$
$\mathrm{m} / \mathrm{sec}^{2} / \mathrm{km}^{2}$
km
$\mathrm{~m} / \mathrm{sec}$
hrs
m
m^{3}
$\mathrm{~m}^{3}$
m

APRIL	MAY	JUNE	JULY	AUGUST	SEPT	
0.372	0.120	0.302	0.788	1.129	0.122	From 'snapshots \& density VP3'
14	14	14	14	14	14	
5.203	1.685	4.226	11.028	15.807	1.710	
2.19	2.19	2.19	2.19	2.19	2.19	
11.395	3.691	9.255	24.152	34.617	3.745	
432	522	549	547	480	387	
17721215	6936148	18291726	47560220	59817603	5216843	
80779	80779	80779	80779	80779	80779	
295650000	295650000	295650000	295650000	295650000	295650000	
4842	1895	4998	12995	16344	1425	
871	341	899	2337	2940	256	
740	290	764	1987	2499	218	
55	21	57	147	185	16	
0.274	0.107	0.283	0.735	0.924	0.081	$2.404 \quad 2.54815$ (x 1.06 to

busy ${ }^{\text {No. }}$

$$
\left.\right|^{\mathrm{Nc}}
$$

No. 5 -mins

O. busy
35

 ${ }^{\text {No. busy }}$

Great Skua - Bird Occupancy Calculations

VP1-Zone A								om '2019 Nos VP1'
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT	
Flight density	birds/km2	0.200	0.417	0.336	0.562	1.134	0.032	
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14	
AR flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km} 2$	2.800	5.844	4.704	7.870	15.869	0.443	
Zone area	km2	0.5102	0.5102	0.5102	0.5102	0.5102	0.5102	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	1.429	2.981	2.400	4.016	8.096	0.226	
Hours available	hrs	432	522	549	547	480	387	
Monthly flight length AR	m	2221714	5602800	4743360	7907330	13990554	314594	
Rotor volume (1 turbine)	m3	80779	80779	80779	80779	80779	80779	
Zone risk volume	m3	68877000	68877000	68877000	68877000	68877000	68877000	
Flight length through rotors	m	2606	6571	5563	9274	16408	369	
No. passes through rotors		469	1182	1001	1668	2951	66	
No. passes at 85\% operational efficiency		398	1005	850	1418	2508	56	
No. striking rotors at 6.6\% BM		26.29	66.30	56.13	93.57	165.56	3.72	
No. striking rotors at 99.5% avoidance		0.131	0.332	0.281	0.468	0.828	0.019	2.039

VP1 - Zone B								
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT	
Flight density	birds/km2	0.040	0.132	0.482	0.443	0.594	0.042	From '2019 Nos VP1'
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14	
AR flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km} 2$	0.556	1.850	6.747	6.196	8.317	0.586	
Zone area	km2	0.7707	0.7707	0.7707	0.7707	0.7707	0.7707	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	0.429	1.426	5.200	4.775	6.410	0.452	
Hours available	hrs	432	522	549	547	480	387	
Monthly flight length AR	m	666514	2679600	10277280	9403312	11075855	629187	
Rotor volume (1 turbine)	m3	80779	80779	80779	80779	80779	80779	
Zone risk volume	m3	104044500	104044500	104044500	104044500	104044500	104044500	
Flight length through rotors	m	517	2080	7979	7301	8599	488	
No. passes through rotors		93	374	1435	1313	1547	88	
No. passes at 85\% operational efficiency		79	318	1220	1116	1315	75	
No. striking rotors at 6.6\% BM		5.22	20.99	80.51	73.66	86.77	4.93	
No. striking rotors at 99.5% avoidance		0.026	0.105	0.403	0.368	0.434	0.025	1.336

VP1 - Zone C								
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT	
Flight density	birds/km2	0.114	0.246	0.135	0.239	0.666	0.069	From '2019 Nos VP1'
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14	
AR flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km} 2$	1.591	3.442	1.884	3.346	9.319	0.967	
Zone area	km2	1.1675	1.1675	1.1675	1.1675	1.1675	1.1675	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	1.857	4.019	2.200	3.907	10.880	1.129	
Hours available	hrs	432	522	549	547	480	387	
Monthly flight length AR	m	2888229	7551600	4348080	7693619	18799807	1572968	
Rotor volume (1 turbine)	m3	80779	80779	80779	80779	80779	80779	
Zone risk volume	m3	157612500	157612500	157612500	157612500	157612500	157612500	
Flight length through rotors	m	1480	3870	2228	3943	9635	806	
No. passes through rotors		266	696	401	709	1733	145	
No. passes at 85\% operational efficiency		226	592	341	603	1473	123	
No. striking rotors at 6.6\% BM		15	39	22	40	97	8	
No. striking rotors at 99.5\% avoidance		0.075	0.195	0.112	0.199	0.486	0.041	1.108

VP1-Zone D								
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT	
Flight density	birds/km2	0.071	0.278	0.289	0.350	0.432	0.075	From '2019 Nos VP1'
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14	
AR flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km} 2$	0.991	3.898	4.048	4.895	6.047	1.045	
Zone area	km2	0.8647	0.8647	0.8647	0.8647	0.8647	0.8647	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	0.857	3.370	3.500	4.233	5.229	0.903	
Hours available	hrs	432	522	549	547	480	387	
Monthly flight length AR	m	1333029	6333600	6917400	8334753	9035566	1258374	
Rotor volume (1 turbine)	m3	80779	80779	80779	80779	80779	80779	
Zone risk volume	m3	116734500	116734500	116734500	116734500	116734500	116734500	
Flight length through rotors	m	922	4383	4787	5768	6253	871	
No. passes through rotors		166	788	861	1037	1125	157	
No. passes at 85% operational efficiency		141	670	732	882	956	133	
No. striking rotors at 6.6\% BM		9.31	44.22	48.30	58.19	63.09	8.79	
No. striking rotors at 99.5\% avoidance		0.047	0.221	0.241	0.291	0.315	0.044	1.159

VP3-Zone A - this zone not used in the risk calculations

		APRIL	MAY	JUNE	JULY	AUGUST	SEPT	
Flight density	birds/km2	0.110	0.573	0.270	0.321	0.817	0.051	From '2019 Nos VP3'
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14	
AR flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km} 2$	1.543	8.019	3.774	4.489	11.442	0.716	
Zone area	km2	0.2835	0.2835	0.2835	0.2835	0.2835	0.2835	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	0.438	2.274	1.070	1.273	3.244	0.203	
Hours available	hrs	432	522	549	547	480	387	
Monthly flight length AR	m	680400	4272369	2114874	2506255	5605463	282678	
Rotor volume (1 turbine)	m3	80779	80779	80779	80779	80779	80779	
Zone risk volume	m3	38272500	38272500	38272500	38272500	38272500	38272500	
Flight length through rotors	m	1436	9017	4464	5290	11831	597	
No. passes through rotors		258	1622	803	951	2128	107	
No. passes at 85% operational efficiency		220	1379	682	809	1809	91	
No. striking rotors at 6.6\% BM		14.49	90.98	45.04	53.37	119.37	6.02	
No. striking rotors at 99.5\% avoidance		0.072	0.455	0.225	0.267	0.597	0.030	1.646

No. striking rotors at 99.5% avoidance

VP3-Zone B								
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT	
Flight density	birds/km2	0.234	0.192	0.327	0.375	0.293	0.046	From '2019 Nos VP3'
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14	
AR flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km} 2$	3.273	2.685	4.574	5.246	4.105	0.651	
Zone area	km2	0.3119	0.3119	0.3119	0.3119	0.3119	0.3119	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	1.021	0.838	1.427	1.636	1.280	0.203	
Hours available	hrs	432	522	549	547	480	387	
Monthly flight length AR	m	1587600	1574031	2819832	3222327	2212683	282678	
Rotor volume (1 turbine)	m3	80779	80779	80779	80779	80779	80779	
Zone risk volume	m3	42106500	42106500	42106500	42106500	42106500	42106500	
Flight length through rotors	m	3046	3020	5410	6182	4245	542	
No. passes through rotors		548	543	973	1112	763	98	
No. passes at 85% operational efficiency		466	462	827	945	649	83	
No. striking rotors at 6.6\% BM		30.73	30.47	54.58	62.37	42.83	5.47	
No. striking rotors at 99.5% avoidance		0.154	0.152	0.273	0.312	0.214	0.027	1.132

VP3-Zone C								
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT	
Flight density	birds/km2	0.029	0.261	0.283	0.216	0.610	0.121	From '2019 Nos VP3'
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14	
AR flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km} 2$	0.405	3.656	3.963	3.030	8.537	1.691	
Zone area	km2	0.3600	0.3600	0.3600	0.3600	0.3600	0.3600	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	0.146	1.316	1.427	1.091	3.073	0.609	
Hours available	hrs	432	522	549	547	480	387	
Monthly flight length AR	m	226800	2473477	2819832	2148218	5310439	848035	
Rotor volume (1 turbine)	m3	80779	80779	80779	80779	80779	80779	
Zone risk volume	m3	48600000	48600000	48600000	48600000	48600000	48600000	
Flight length through rotors	m	377	4111	4687	3571	8827	1410	
No. passes through rotors		68	739	843	642	1588	254	
No. passes at 85% operational efficiency		58	629	717	546	1349	215	
No. striking rotors at 6.6\% BM		3.80	41.48	47.29	36.03	89.06	14.22	
No. striking rotors at 99.5% avoidance		0.019	0.207	0.236	0.180	0.445	0.071	1.159

VP3-Zone D-this zone not used in the risk calculations								From '2019 Nos VP3'
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT	
Flight density	birds/km2	0.170	0.493	0.458	0.445	0.982	0.142	
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14	
AR flight rate	m/sec/km2	2.381	6.904	6.407	6.235	13.754	1.988	
Zone area	km2	0.9186	0.9186	0.9186	0.9186	0.9186	0.9186	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	2.188	6.342	5.885	5.727	12.634	1.826	
Hours available	hrs	432	522	549	547	480	387	
Monthly flight length AR	m	3402000	11917662	11631806	11278145	21831805	2544104	
Rotor volume (1 turbine)	m3	80779	80779	80779	80779	80779	80779	
Zone risk volume	m3	124011000	124011000	124011000	124011000	124011000	124011000	
Flight length through rotors	m	2216	7763	7577	7346	14221	1657	
No. passes through rotors		399	1396	1363	1321	2558	298	
No. passes at 85% operational efficiency		339	1187	1158	1123	2174	253	
No. striking rotors at 6.6\% BM		22.36	78.33	76.45	74.12	143.49	16.72	
No. striking rotors at 99.5\% avoidance		0.112	0.392	0.382	0.371	0.717	0.084	2.057

VP3-Zone E								
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT	
Flight density	birds/km2	0.221	0.253	0.180	0.202	0.189	0.041	From '2019 Nos VP3'
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14	
AR flight rate	m/sec/km2	3.089	3.548	2.518	2.824	2.652	0.573	
Zone area	km2	0.7082	0.7082	0.7082	0.7082	0.7082	0.7082	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	2.188	2.513	1.783	2.000	1.878	0.406	
Hours available	hrs	432	522	549	547	480	387	
Monthly flight length AR	m	3402000	4722092	3524790	3938400	3245268	565357	
Rotor volume (1 turbine)	m3	80779	80779	80779	80779	80779	80779	
Zone risk volume	m3	95607000	95607000	95607000	95607000	95607000	95607000	
Flight length through rotors	m	2874	3990	2978	3328	2742	478	
No. passes through rotors		517	718	536	598	493	86	
No. passes at 85% operational efficiency		439	610	455	509	419	73	
No. striking rotors at 6.6\% BM		29.00	40.26	30.05	33.58	27.67	4.82	
No. striking rotors at 99.5% avoidance		0.145	0.201	0.150	0.168	0.138	0.024	0.827

VP3-Zone F								From '2019 Nos VP3'
		APRIL	MAY	JUNE	JULY	AUGUST	SEPT	
Flight density	birds/km2	0.064	0.250	0.462	0.220	0.386	0.112	
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14	14	
AR flight rate	m/sec/km2	0.900	3.507	6.465	3.085	5.399	1.565	
Zone area	km2	0.6483	0.6483	0.6483	0.6483	0.6483	0.6483	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	0.583	2.274	4.191	2.000	3.500	1.014	
Hours available	hrs	432	522	549	547	480	387	
Monthly flight length AR	m	907200	4272369	8283256	3938400	6048000	1413391	
Rotor volume (1 turbine)	m3	80779	80779	80779	80779	80779	80779	
Zone risk volume	m3	87520500	87520500	87520500	87520500	87520500	87520500	
Flight length through rotors	m	837	3943	7645	3635	5582	1305	
No. passes through rotors		151	709	1375	654	1004	235	
No. passes at 85\% operational efficiency		128	603	1169	556	853	199	
No. striking rotors at 6.6\% BM		8.45	39.79	77.14	36.68	56.32	13.16	
No. striking rotors at 99.5\% avoidance		0.042	0.199	0.386	0.183	0.282	0.066	1.158

Annex 4

	smap	
72		
Is per s.apephot 2.13		
0000		
raphot 2		
	Nets sape	
127		
sapshot 2		
	Net smas	
12		
	Ione area	
snapsto 2		
72	0.0	
	178	
	1.78	
Snpater 20.15		
12	2 72000	
	2oneares 1,8	
5 Smins Nets saps $\frac{\text { zone }}{0}$		
	0.00	
	(1.000	

Great Black-backed Gull - Bird Occupancy Calculation

Great Black-backed Gull - Bird Occupancy Calculation

VP1- Zone A	Breeding Season							Non-breeding Season							
		APRIL	MAY		JULY	AUGUST		SEPT	оСт	NOV	DEC	JAN	FEB	MAR	
Flight density	birds/km2	0.000	0.000	0.014	0.015	0.012	From 'GB 2019 nos'	0.032	0.059	0.028	0.057	0.028	0.000	0.000	From 'GB 2019 nos'
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14		14	14	14	14	14	14	14	
AR flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km} 2$	0.000	0.000	0.196	0.213	0.165		0.443	0.819	0.398	0.795	0.398	0.000	0.000	
Zone area	km2	0.5102	0.5102	0.5102	0.5102	0.5102		0.5102	0.5102	0.5102	0.5102	0.5102	0.5102	0.5102	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	0.000	0.000	0.100	0.109	0.084		0.226	0.418	0.203	0.406	0.203	0.000	0.000	
Hours available	hrs	432	522	549	547	480		387	319	236	198	220	258	365	
Monthly flight length AR	m	0	0	197640	213712	145735		314594	479928	172383	289252	160696	0	0	
Rotor volume (1 turbine)	m3	71335	71335	71335	71335	71335		71335	71335	71335	71335	71335	71335	71335	
Zone risk volume	m3	68877000	68877000	68877000	68877000	68877000		68877000	68877000	68877000	68877000	68877000	68877000	68877000	
Flight length through rotors	m	0	0	205	221	151		326	497	179	300	166	0	0	
No. passes through rotors		0	0	42	45	31		66	101	36	61	34	0	0	
No. passes at 85\% operational efficiency		0	0	35	38	26		56	86	31	52	29	0	0	
No. striking rotors at Band Model 7.3\%		0.00	0.00	2.59	2.80	1.91		4.12	6.28	2.26	3.79	2.10	0.00	, 00	
No. striking rotors at 98% avoidance		0.000	0.000	0.052	0.056	0.038	0.146	0.082	0.126	0.045	0.076	0.042	0.000	0.000	0.371
VP1-Zone B															
		APRIL	MAY	JUNE	JULY	AUGUST		SEPT	ост	NOV	DEC	Jan	FEB	MAR	
Flight density	birds/km2	0.000	0.036	0.056	0.010	0.000	From 'GB 2019 nos'	0.021	0.077	0.019	0.000	0.000	0.000	0.021	From 'GB 2019 nos'
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14		14	14	14	14	14	14	14	
AR flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km} 2$	0.000	0.505	0.779	0.141	0.000		0.293	1.084	0.263	0.000	0.000	0.000	0.298	
Zone area	km2	0.7707	0.7707	0.7707	0.7707	0.7707		0.7707	0.7707	0.7707	0.7707	0.7707	0.7707	0.7707	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	0.000	0.389	0.600	0.109	0.000		0.226	0.836	0.203	0.000	0.000	0.000	0.230	
Hours available	hrs	432	522	549	547	480		387	319	236	198	220	258	365	
Monthly flight length AR	m	0	730800	1185840	213712	0		314594	959857	172383	0	0	0	301574	
Rotor volume (1 turbine)	m3	71335	71335	71335	71335	71335		71335	71335	71335	71335	71335	71335	71335	
Zone risk volume	m3	104044500	104044500	104044500	104044500	104044500		104044500	104044500	104044500	104044500	104044500	104044500	104044500	
Flight length through rotors	m	0	501	813	147	0		216	658	118	0		0	207	
No. passes through rotors		0	102	166	30	0		44	134	24	0		0	42	
No. passes at 85% operational efficiency		0	87	141	25	0		37	114	20	0	0	0	36	
No. striking rotors at Band Model 7.3\%		0.00	6.33	10.27	1.85	0.00		2.73	8.32	1.49	0.00	0.00	0.00	2.61	
No. striking rotors at 98% avoidance		0.000	0.127	0.205	0.037	0.000	0.369	0.055	0.166	0.030	0.000	0.000	0.000	0.052	0.303
VP1-Zone C															
		APRIL	MAY	JUNE	JULY	AUGUST		SEPT	ост	NOV	DEC	JAN	FEB	MAR	
Flight density	birds/km2	0.000	0.000	0.000	0.000	0.005	From 'GB 2019 nos'	0.000	0.013	0.037	0.037	0.037	0.013	0.014	From 'GB 2019 nos'
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14		14	14	14	14	14	14	14	
AR flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km} 2$	000	. 000	0.000	0.000	0.072		0.000	. 179	521	0.521	0.521	179	0.197	
Zone area	km2	1.1675	1.1675	1.1675	1.1675	1.1675		1.1675	1.1675	1.1675	1.1675	1.1675	1.1675	1.1675	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	0.000	0.000	0.000	0.000	0.084		0.000	0.209	0.609	0.609	0.609	0.209	0.230	
Hours available	hrs	432	522	549	547	480		387	319	236	198	220	258	365	
Monthly fight length AR	m	0	0	0	0	145735		0	239964	517148	433878	482087	194078	301574	
Rotor volume (1 turbine)	m3	71335	71335	71335	71335	71335		71335	71335	71335	71335	71335	71335	71335	
Zone risk volume	m3	157612500	157612500	157612500	157612500	157612500		157612500	157612500	157612500	157612500	157612500	157612500	157612500	
Flight length through rotors	m	0	0	0	0	66		0	109	234	196	218	88	136	
No. passes through rotors		0	0	0	0	13		0	22	48	40	44	18	28	
No. passes at 85\% operational efficiency		0	0	0	0	11		0	19	41	34	38	15	24	
No. striking rotors at Band Model 7.3%		0.00	0.00	0.00	0.00	0.83		0.00	1.37	2.96	2.48	2.76	1.11	1.72	
No. striking rotors at 98% avoidance		0.000	0.000	0.000	0.000	0.017	0.017	0.000	0.027	0.059	0.050	0.055	0.022	0.034	0.248
VP1-Zone D															
		APRIL	MAY	JUNE	JULY	AUGUST		SEPT	ост	Nov	DEC	JAN	FEB	MAR	
Flight density	birds/km2	0.012	0.000	0.000	0.000	0.007	From 'GB 2019 nos'	0.000	0.035	0.067	0.017	0.017	0.000	0.019	From 'GB 2019 nos'
Flight speed	$\mathrm{m} / \mathrm{sec}$	14	14	14	14	14		14	14	14	14	14	14	14	
AR flight rate	$\mathrm{m} / \mathrm{sec} / \mathrm{km} 2$	0.165	0.000	0.000	0.000	0.098		0.000	0.483	0.939	0.235	0.235	0.000	0.265	
Zone area	km2	0.8647	0.8647	0.8647	0.8647	0.8647		0.8647	0.8647	0.8647	0.8647	0.8647	0.8647	0.8647	
Flight rate in zone	$\mathrm{m} / \mathrm{sec}$	0.143	0.000	0.000	0.000	0.084		0.000	0.418	0.812	0.203	0.203	0.000	0.230	
Hours available	hrs	432	522	549	547	480		387	319	236	198	220	258	365	
Monthly flight length AR	m	222171	0	0	0	145735		0	479928	689530	144626	160696	0	301574	
Rotor volume (1 turbine)	m3	71335	71335	71335	71335	71335		71335	71335	71335	71335	71335	71335	71335	
Zone risk volume	m3	116734500	116734500	116734500	116734500	116734500		116734500	116734500	116734500	116734500	116734500	116734500	116734500	
Flight length through rotors	m	136	0	0	0	89		0	293	421	88	98	0	184	
No. passes through rotors		28	0	0	0	18		0	60	86	18	20	0	38	
No. passes at 85% operational efficiency		24	0	0	0	15		0	51	73	15	17	0	32	
No. striking rotors at Band Model 7.3\%		1.72	0.00	0.00	0.00	1.13		0.00	3.71	5.33	1.12	1.24	0.00	2.33	
No. striking rotors at 98% avoidance		0.034	0.000	0.000	0.000	0.023	0.057	0.000	0.074	0.107	0.022	0.025	0.000	0.047	0.274

Great Black．⿰氵⿱亠䒑cked Gull－Bird occurancy Caluwation

VP3．－zone A－this zone not used in the	risk catulutio	APRIL	mav	JUNE	July	august
Figlt densily	birsskmp	0.110	0.090	0.045	0.000	0.086
Fripht sped		1．543	$1 \begin{aligned} & 14 \\ & 1.268\end{aligned}$	14 0.629	（14	1.204
Zone area		0.2835	0.2835	0.2835	0.2835	0.2835
Fightratie in zone	msec	0.438	0.359	0.178	0.000	${ }^{0.341}$
Hours analabe	mis	432	522	549	547	80
Noonty titht engh AR	${ }_{\text {m }}$		${ }_{7}^{674355}$	${ }_{\substack{35279 \\ 7735}}^{1}$	${ }_{713} 135$	${ }_{7}^{5} 1735$
Zone isiswoume	${ }_{\text {m }}$	38272500	${ }^{3827550}$	38275500	3827550	33275500
Figithenght hrough rours	m	${ }^{1258}$	${ }^{1255}$	${ }^{657}$	0	${ }_{1}^{1100}$
		${ }_{220}^{228}$	${ }_{218}^{266}$	${ }_{114}^{134}$	\％	${ }_{\substack{224 \\ 190}}^{20}$
		${ }_{16.03}^{16,}$	15.89	8.30	0.00	

[^0]: 58.66 Total speeds of bids in WF bufter
 13.22 Average speed of b birds in WF buffer

